PROBE / src /vis_utils.py
mgyigit's picture
Update src/vis_utils.py
2d69cc8 verified
raw
history blame
13.3 kB
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
from matplotlib import ticker
import seaborn as sns
import plotnine as p9
import sys
import numpy as np
script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append('..')
sys.path.append('.')
from about import *
from saving_utils import download_from_hub
global data_component, filter_component
def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric, aspect, dataset, single_metric):
if benchmark_type == 'similarity':
return plot_similarity_results(methods_selected, x_metric, y_metric)
elif benchmark_type == 'function':
return plot_function_results(methods_selected, aspect, single_metric)
elif benchmark_type == 'family':
return plot_family_results(methods_selected, dataset)
elif benchmark_type == "affinity":
return plot_affinity_results(methods_selected, single_metric)
else:
return -1
def get_method_color(method):
return color_dict.get(method, 'black') # If method is not in color_dict, use black
def get_labels_and_title(x_metric, y_metric):
# Define mapping for long forms
long_form_mapping = {
"MF": "Molecular Function",
"BP": "Biological Process",
"CC": "Cellular Component"
}
# Parse the metrics
def parse_metric(metric):
parts = metric.split("_")
dataset = parts[0] # sparse/200/500
category = parts[1] # MF/BP/CC
measure = parts[2] # pvalue/correlation
return dataset, category, measure
x_dataset, x_category, x_measure = parse_metric(x_metric)
y_dataset, y_category, y_measure = parse_metric(y_metric)
# Determine the title
if x_category == y_category:
title = long_form_mapping[x_category]
else:
title = f"{long_form_mapping[x_category]} (x) vs {long_form_mapping[y_category]} (y)"
# Determine the axis labels
x_label = f"{x_measure.capitalize()} on {x_dataset.capitalize()} Dataset"
y_label = f"{y_measure.capitalize()} on {y_dataset.capitalize()} Dataset"
return title, x_label, y_label
def plot_similarity_results(methods_selected, x_metric, y_metric, similarity_path="/tmp/similarity_results.csv"):
if not os.path.exists(similarity_path):
benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
download_from_hub(benchmark_types)
similarity_df = pd.read_csv(similarity_path)
# Filter the dataframe based on selected methods
filtered_df = similarity_df[similarity_df['Method'].isin(methods_selected)]
# Replace None or NaN values with 0 in relevant columns
filtered_df = filtered_df.fillna(0)
# Add a new column to the dataframe for the color
filtered_df['color'] = filtered_df['Method'].apply(get_method_color)
title, x_label, y_label = get_labels_and_title(x_metric, y_metric)
adjust_text_dict = {
'expand_text': (1.15, 1.4), 'expand_points': (1.15, 1.25), 'expand_objects': (1.05, 1.5),
'expand_align': (1.05, 1.2), 'autoalign': 'xy', 'va': 'center', 'ha': 'center',
'force_text': (.0, 1.), 'force_objects': (.0, 1.),
'lim': 500000, 'precision': 1., 'avoid_points': True, 'avoid_text': True
}
# Create the scatter plot using plotnine (ggplot)
g = (p9.ggplot(data=filtered_df,
mapping=p9.aes(x=x_metric, # Use the selected x_metric
y=y_metric, # Use the selected y_metric
color='color', # Use the dynamically generated color
label='Method')) # Label each point by the method name
+ p9.geom_point(size=3) # Add points with no jitter, set point size
+ p9.geom_text(nudge_y=0.02, size=8) # Add method names as labels, nudge slightly above the points
+ p9.labs(title=title, x=x_label, y=y_label) # Dynamic labels for X and Y axes
+ p9.scale_color_identity() # Use colors directly from the dataframe
+ p9.theme(legend_position='none',
figure_size=(8, 8), # Set figure size
axis_text=p9.element_text(size=10),
axis_title_x=p9.element_text(size=12),
axis_title_y=p9.element_text(size=12))
)
# Save the plot as an image
save_path = "/tmp"
filename = os.path.join(save_path, title.replace(" ", "_") + "_Similarity_Scatter.png")
g.save(filename=filename, dpi=400)
return filename
def plot_function_results(method_names, aspect, metric, function_path="/tmp/function_results.csv"):
if not os.path.exists(function_path):
benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
download_from_hub(benchmark_types)
# Load data
df = pd.read_csv(function_path)
# Filter for selected methods
df = df[df['Method'].isin(method_names)]
# Filter columns for specified aspect and metric
columns_to_plot = [col for col in df.columns if col.startswith(f"{aspect}_") and col.endswith(f"_{metric}")]
df = df[['Method'] + columns_to_plot]
df.set_index('Method', inplace=True)
# Fill missing values with 0
df = df.fillna(0)
df = df.T
# Generate colors for methods
row_color_dict = {method: get_method_color(method) for method in df.index}
long_form_mapping = {
"MF": "Molecular Function",
"BP": "Biological Process",
"CC": "Cellular Component"
}
# Create clustermap
g = sns.clustermap(df, annot=True, cmap="YlGnBu", row_cluster=True, col_cluster=True, figsize=(15, 15))
for label in g.ax_heatmap.get_yticklabels():
method = label.get_text()
label.set_color(get_method_color(method))
# Apply color to column labels
for label in g.ax_heatmap.get_xticklabels():
method = label.get_text()
label.set_color(get_method_color(method))
title = f"{long_form_mapping[aspect.upper()]} Results for {metric.capitalize()}"
g.fig.suptitle(title, x=0.5, y=1.02, fontsize=16, ha='center') # Center the title above the plot
# Get heatmap axis and customize labels
ax = g.ax_heatmap
ax.set_xlabel("")
ax.set_ylabel("")
# Save the plot as an image
save_path = "/tmp"
filename = os.path.join(save_path, f"{aspect}_{metric}_heatmap.png")
plt.savefig(filename, dpi=400, bbox_inches='tight')
plt.close() # Close the plot to free memory
return filename
def plot_family_results(method_names, dataset, family_path="/tmp/family_results.csv"):
if not os.path.exists(family_path):
benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
download_from_hub(benchmark_types)
df = pd.read_csv(family_path)
# Filter by method names and selected dataset columns
df = df[df['Method'].isin(method_names)]
mcc_columns = [col for col in df.columns if col.startswith(f"{dataset}_mcc_")]
df['Mean_MCC'] = df[mcc_columns].mean(axis=1)
# Sort the DataFrame by the mean MCC
df = df.sort_values(by='Mean_MCC', ascending=True)
# Filter columns based on the dataset and metrics
value_vars = [col for col in df.columns if col.startswith(f"{dataset}_") and "_" in col]
# Reshape the DataFrame to long format
df_long = pd.melt(df, id_vars=["Method"], value_vars=value_vars, var_name="Dataset_Metric_Fold", value_name="Value")
print(df_long)
# Convert the "Value" column to numeric
df_long["Value"] = pd.to_numeric(df_long["Value"], errors="coerce")
# Drop rows with NaN values in "Value"
df_long = df_long.dropna(subset=["Value"])
# Split the "Dataset_Metric_Fold" column into "Metric" and "Fold"
df_long[["Metric", "Fold"]] = df_long["Dataset_Metric_Fold"].str[len(dataset) + 1:].str.split("_", expand=True)
df_long["Fold"] = df_long["Fold"].astype(int)
# Set up the plot
sns.set(rc={"figure.figsize": (13.7, 18.27)})
sns.set_theme(style="whitegrid", color_codes=True)
# Create boxplot
ax = sns.boxplot(data=df_long, x="Value", y="Method", hue="Metric", whis=np.inf, orient="h")
# Customize grid and ticks
ax.xaxis.set_major_locator(ticker.MultipleLocator(0.2))
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.grid(visible=True, which="major", color="gainsboro", linewidth=1.0)
ax.grid(visible=True, which="minor", color="whitesmoke", linewidth=0.5)
ax.set_xlim(0, 1)
# Add dashed lines between methods
yticks = ax.get_yticks()
for ytick in yticks:
ax.hlines(ytick + 0.5, -0.1, 1, linestyles="dashed", color="gray")
# Apply color settings to y-axis labels
for label in ax.get_yticklabels():
method = label.get_text()
label.set_color(get_method_color(method))
# Save the plot
save_path = "/tmp"
filename = os.path.join(save_path, f"{dataset}_family_results.png")
ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
plt.close() # Close the plot to free memory
return filename
def plot_affinity_results(method_names, metric, affinity_path="/tmp/affinity_results.csv"):
if not os.path.exists(affinity_path):
benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later
download_from_hub(benchmark_types)
df = pd.read_csv(affinity_path)
# Filter for selected methods
df = df[df['Method'].isin(method_names)]
# Gather columns related to the specified metric and validate
metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")]
df = df[['Method'] + metric_columns].set_index('Method')
df = df.sort_values(by=metric_columns, ascending=False)
df = df.fillna(0)
df = df.T
# Set up the plot
sns.set(rc={'figure.figsize': (11.7, 8.27)})
sns.set_theme(style="whitegrid", color_codes=True)
# Create the boxplot
ax = sns.boxplot(data=df, whis=np.inf, orient="h")
# Add a swarmplot on top of the boxplot
sns.swarmplot(data=df, orient="h", color=".1", ax=ax)
# Set labels and x-axis formatting
ax.set_xlabel("Percent Pearson Correlation")
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.grid(visible=True, which='major', color='gainsboro', linewidth=1.0)
ax.grid(visible=True, which='minor', color='whitesmoke', linewidth=0.5)
# Apply custom color settings to y-axis labels
for label in ax.get_yticklabels():
method = label.get_text()
label.set_color(get_method_color(method))
# Add legend
ax.legend(loc='best', frameon=True)
# Save the plot
save_path = "/tmp"
filename = os.path.join(save_path, f"{metric}_affinity_results.png")
ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
plt.close() # Close the plot to free memory
return filename
def update_metric_choices(benchmark_type):
if benchmark_type == 'similarity':
# Show x and y metric selectors for similarity
metric_names = benchmark_specific_metrics.get(benchmark_type, [])
return (
gr.update(choices=metric_names, value=metric_names[0], visible=True),
gr.update(choices=metric_names, value=metric_names[1], visible=True),
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
)
elif benchmark_type == 'function':
# Show aspect and dataset type selectors for function
aspect_types = benchmark_specific_metrics[benchmark_type]['aspect_types']
metric_types = benchmark_specific_metrics[benchmark_type]['dataset_types']
return (
gr.update(visible=False), gr.update(visible=False),
gr.update(choices=aspect_types, value=aspect_types[0], visible=True),
gr.update(visible=False),
gr.update(choices=metric_types, value=metric_types[0], visible=True)
)
elif benchmark_type == 'family':
# Show dataset and metric selectors for family
datasets = benchmark_specific_metrics[benchmark_type]['datasets']
metrics = benchmark_specific_metrics[benchmark_type]['metrics']
return (
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
gr.update(choices=datasets, value=datasets[0], visible=True),
gr.update(visible=False)
)
elif benchmark_type == 'affinity':
# Show single metric selector for affinity
metrics = benchmark_specific_metrics[benchmark_type]
return (
gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False), gr.update(choices=metrics, value=metrics[0], visible=True)
)
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)