import gradio as gr import pandas as pd import re import os import json import yaml import matplotlib.pyplot as plt from matplotlib import ticker import seaborn as sns import plotnine as p9 import sys import numpy as np script_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append('..') sys.path.append('.') from about import * from saving_utils import download_from_hub global data_component, filter_component def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric, aspect, dataset, single_metric): if benchmark_type == 'similarity': return plot_similarity_results(methods_selected, x_metric, y_metric) elif benchmark_type == 'function': return plot_function_results(methods_selected, aspect, single_metric) elif benchmark_type == 'family': return plot_family_results(methods_selected, dataset) elif benchmark_type == "affinity": return plot_affinity_results(methods_selected, single_metric) else: return -1 def get_method_color(method): return color_dict.get(method, 'black') # If method is not in color_dict, use black def get_labels_and_title(x_metric, y_metric): # Define mapping for long forms long_form_mapping = { "MF": "Molecular Function", "BP": "Biological Process", "CC": "Cellular Component" } # Parse the metrics def parse_metric(metric): parts = metric.split("_") dataset = parts[0] # sparse/200/500 category = parts[1] # MF/BP/CC measure = parts[2] # pvalue/correlation return dataset, category, measure x_dataset, x_category, x_measure = parse_metric(x_metric) y_dataset, y_category, y_measure = parse_metric(y_metric) # Determine the title if x_category == y_category: title = long_form_mapping[x_category] else: title = f"{long_form_mapping[x_category]} (x) vs {long_form_mapping[y_category]} (y)" # Determine the axis labels x_label = f"{x_measure.capitalize()} on {x_dataset.capitalize()} Dataset" y_label = f"{y_measure.capitalize()} on {y_dataset.capitalize()} Dataset" return title, x_label, y_label def plot_similarity_results(methods_selected, x_metric, y_metric, similarity_path="/tmp/similarity_results.csv"): if not os.path.exists(similarity_path): benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later download_from_hub(benchmark_types) similarity_df = pd.read_csv(similarity_path) # Filter the dataframe based on selected methods filtered_df = similarity_df[similarity_df['Method'].isin(methods_selected)] # Replace None or NaN values with 0 in relevant columns filtered_df = filtered_df.fillna(0) # Add a new column to the dataframe for the color filtered_df['color'] = filtered_df['Method'].apply(get_method_color) title, x_label, y_label = get_labels_and_title(x_metric, y_metric) adjust_text_dict = { 'expand_text': (1.15, 1.4), 'expand_points': (1.15, 1.25), 'expand_objects': (1.05, 1.5), 'expand_align': (1.05, 1.2), 'autoalign': 'xy', 'va': 'center', 'ha': 'center', 'force_text': (.0, 1.), 'force_objects': (.0, 1.), 'lim': 500000, 'precision': 1., 'avoid_points': True, 'avoid_text': True } # Create the scatter plot using plotnine (ggplot) g = (p9.ggplot(data=filtered_df, mapping=p9.aes(x=x_metric, # Use the selected x_metric y=y_metric, # Use the selected y_metric color='color', # Use the dynamically generated color label='Method')) # Label each point by the method name + p9.geom_point(size=3) # Add points with no jitter, set point size + p9.geom_text(nudge_y=0.02, size=8) # Add method names as labels, nudge slightly above the points + p9.labs(title=title, x=x_label, y=y_label) # Dynamic labels for X and Y axes + p9.scale_color_identity() # Use colors directly from the dataframe + p9.theme(legend_position='none', figure_size=(8, 8), # Set figure size axis_text=p9.element_text(size=10), axis_title_x=p9.element_text(size=12), axis_title_y=p9.element_text(size=12)) ) # Save the plot as an image save_path = "/tmp" filename = os.path.join(save_path, title.replace(" ", "_") + "_Similarity_Scatter.png") g.save(filename=filename, dpi=400) return filename def plot_function_results(method_names, aspect, metric, function_path="/tmp/function_results.csv"): if not os.path.exists(function_path): benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later download_from_hub(benchmark_types) # Load data df = pd.read_csv(function_path) # Filter for selected methods df = df[df['Method'].isin(method_names)] # Filter columns for specified aspect and metric columns_to_plot = [col for col in df.columns if col.startswith(f"{aspect}_") and col.endswith(f"_{metric}")] df = df[['Method'] + columns_to_plot] df.set_index('Method', inplace=True) # Fill missing values with 0 df = df.fillna(0) df = df.T # Generate colors for methods row_color_dict = {method: get_method_color(method) for method in df.index} long_form_mapping = { "MF": "Molecular Function", "BP": "Biological Process", "CC": "Cellular Component" } # Create clustermap g = sns.clustermap(df, annot=True, cmap="YlGnBu", row_cluster=True, col_cluster=True, figsize=(15, 15)) for label in g.ax_heatmap.get_yticklabels(): method = label.get_text() label.set_color(get_method_color(method)) # Apply color to column labels for label in g.ax_heatmap.get_xticklabels(): method = label.get_text() label.set_color(get_method_color(method)) title = f"{long_form_mapping[aspect.upper()]} Results for {metric.capitalize()}" g.fig.suptitle(title, x=0.5, y=1.02, fontsize=16, ha='center') # Center the title above the plot # Get heatmap axis and customize labels ax = g.ax_heatmap ax.set_xlabel("") ax.set_ylabel("") # Save the plot as an image save_path = "/tmp" filename = os.path.join(save_path, f"{aspect}_{metric}_heatmap.png") plt.savefig(filename, dpi=400, bbox_inches='tight') plt.close() # Close the plot to free memory return filename def plot_family_results(method_names, dataset, family_path="/tmp/family_results.csv"): if not os.path.exists(family_path): benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later download_from_hub(benchmark_types) df = pd.read_csv(family_path) # Filter by method names and selected dataset columns df = df[df['Method'].isin(method_names)] mcc_columns = [col for col in df.columns if col.startswith(f"{dataset}_mcc_")] df['Mean_MCC'] = df[mcc_columns].mean(axis=1) # Sort the DataFrame by the mean MCC df = df.sort_values(by='Mean_MCC', ascending=True) # Filter columns based on the dataset and metrics value_vars = [col for col in df.columns if col.startswith(f"{dataset}_") and "_" in col] # Reshape the DataFrame to long format df_long = pd.melt(df, id_vars=["Method"], value_vars=value_vars, var_name="Dataset_Metric_Fold", value_name="Value") print(df_long) # Convert the "Value" column to numeric df_long["Value"] = pd.to_numeric(df_long["Value"], errors="coerce") # Drop rows with NaN values in "Value" df_long = df_long.dropna(subset=["Value"]) # Split the "Dataset_Metric_Fold" column into "Metric" and "Fold" df_long[["Metric", "Fold"]] = df_long["Dataset_Metric_Fold"].str[len(dataset) + 1:].str.split("_", expand=True) df_long["Fold"] = df_long["Fold"].astype(int) # Set up the plot sns.set(rc={"figure.figsize": (13.7, 18.27)}) sns.set_theme(style="whitegrid", color_codes=True) # Create boxplot ax = sns.boxplot(data=df_long, x="Value", y="Method", hue="Metric", whis=np.inf, orient="h") # Customize grid and ticks ax.xaxis.set_major_locator(ticker.MultipleLocator(0.2)) ax.xaxis.set_minor_locator(ticker.AutoMinorLocator()) ax.yaxis.set_minor_locator(ticker.AutoMinorLocator()) ax.grid(visible=True, which="major", color="gainsboro", linewidth=1.0) ax.grid(visible=True, which="minor", color="whitesmoke", linewidth=0.5) ax.set_xlim(0, 1) # Add dashed lines between methods yticks = ax.get_yticks() for ytick in yticks: ax.hlines(ytick + 0.5, -0.1, 1, linestyles="dashed", color="gray") # Apply color settings to y-axis labels for label in ax.get_yticklabels(): method = label.get_text() label.set_color(get_method_color(method)) # Save the plot save_path = "/tmp" filename = os.path.join(save_path, f"{dataset}_family_results.png") ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight') plt.close() # Close the plot to free memory return filename def plot_affinity_results(method_names, metric, affinity_path="/tmp/affinity_results.csv"): if not os.path.exists(affinity_path): benchmark_types = ["similarity", "function", "family", "affinity"] #download all files for faster results later download_from_hub(benchmark_types) df = pd.read_csv(affinity_path) # Filter for selected methods df = df[df['Method'].isin(method_names)] # Gather columns related to the specified metric and validate metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")] df = df[['Method'] + metric_columns].set_index('Method') df = df.sort_values(by=metric_columns, ascending=False) df = df.fillna(0) df = df.T # Set up the plot sns.set(rc={'figure.figsize': (11.7, 8.27)}) sns.set_theme(style="whitegrid", color_codes=True) # Create the boxplot ax = sns.boxplot(data=df, whis=np.inf, orient="h") # Add a swarmplot on top of the boxplot sns.swarmplot(data=df, orient="h", color=".1", ax=ax) # Set labels and x-axis formatting ax.set_xlabel("Percent Pearson Correlation") ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) ax.xaxis.set_minor_locator(ticker.AutoMinorLocator()) ax.yaxis.set_minor_locator(ticker.AutoMinorLocator()) ax.grid(visible=True, which='major', color='gainsboro', linewidth=1.0) ax.grid(visible=True, which='minor', color='whitesmoke', linewidth=0.5) # Apply custom color settings to y-axis labels for label in ax.get_yticklabels(): method = label.get_text() label.set_color(get_method_color(method)) # Add legend ax.legend(loc='best', frameon=True) # Save the plot save_path = "/tmp" filename = os.path.join(save_path, f"{metric}_affinity_results.png") ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight') plt.close() # Close the plot to free memory return filename def update_metric_choices(benchmark_type): if benchmark_type == 'similarity': # Show x and y metric selectors for similarity metric_names = benchmark_specific_metrics.get(benchmark_type, []) return ( gr.update(choices=metric_names, value=metric_names[0], visible=True), gr.update(choices=metric_names, value=metric_names[1], visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) ) elif benchmark_type == 'function': # Show aspect and dataset type selectors for function aspect_types = benchmark_specific_metrics[benchmark_type]['aspect_types'] metric_types = benchmark_specific_metrics[benchmark_type]['dataset_types'] return ( gr.update(visible=False), gr.update(visible=False), gr.update(choices=aspect_types, value=aspect_types[0], visible=True), gr.update(visible=False), gr.update(choices=metric_types, value=metric_types[0], visible=True) ) elif benchmark_type == 'family': # Show dataset and metric selectors for family datasets = benchmark_specific_metrics[benchmark_type]['datasets'] metrics = benchmark_specific_metrics[benchmark_type]['metrics'] return ( gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(choices=datasets, value=datasets[0], visible=True), gr.update(visible=False) ) elif benchmark_type == 'affinity': # Show single metric selector for affinity metrics = benchmark_specific_metrics[benchmark_type] return ( gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(choices=metrics, value=metrics[0], visible=True) ) return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)