Spaces:
Running
on
Zero
Tanks and Temples.
Image set
Data Preparation
Download the images data from here (for intermidiated and advanced set, please download from here), and COLMAP results from (here)[https://storage.googleapis.com/niantic-lon-static/research/acezero/colmap_raw.tar.gz]. We thank ACE0 again for providing the COLMAP results.
Adjust the parameter in
run_tnt.shSpecify the
dataset_root,colmap_dir,model_pathandsave_dirin the file.Get the inference results.
sh run_tnt.sh
Video set
Click to expand
7 scenes
- Data Preparation Download the corresponding sequence from here.
TUM-RGBD
Data Preparation
Download the corresponding sequence from here.
Adjust the parameter in
run_tum.shSpecify the
dataset_root,recon_img_num,model_pathandsave_dirin the file.Evaluate the results.
sh run_tum.shNoting that we set the
recon_img_numto 50 or 100 according to the length of dataset. Please refer to the supplementary of paper for detail.Using evo to evaluate The results
evo_ape tum gt_pose.txt pred_tum.txt -vas
7 scenes
Download the dataset from here and Pseudo Ground Truth (PGT) (see the ICCV 2021 paper , and associated code for details).
Adjust the parameter in
run_7scenes.shSpecify the
dataset_root,recon_img_num,model_pathandsave_dirin the file.Evaluate the results.
sh run_7scenes.shYou will see a
result.txtfile reporting the evaluation results.
Mip-NeRF 360
Data Preparation
Download the data from here.
Adjust the parameter in
run_mip.shSpecify the
dataset_root,model_pathandsave_dirin the file.Get the inference results.
sh run_mip.sh
Co3D-V2
We thank VGGT for providing evaluation code of CO3D-V2 dataset. Please see link here for data preparation and processing.
Adjust the parameterco3d_dir in
runco3d_anno_dir_7scenes.shSpecify the
dataset_root,recon_img_num,model_path,recon,relocandfixed_rankin the file.Evaluate the results.
sh run_co3d.shYou will see evaluation result in the terminal.