A newer version of the Gradio SDK is available:
6.1.0
title: Deploy Ready Copilot
emoji: ๐
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
tags:
- mcp-in-action-track-enterprise
- building-mcp-track-enterprise
- gradio
- claude
- multi-agent
- deployment
- productivity
- context7
- github
- vercel
- mcp-server
๐ Deployment Readiness Copilot
Multi-agent AI system for deployment readiness validation and documentation generation
๐ฏ Overview
The Deployment Readiness Copilot is a productivity-focused, developer-centric tool that automates deployment readiness checks using a multi-agent architecture. It combines Claude's reasoning with sponsor LLM cross-checks and MCP tool integration to provide comprehensive pre-deployment validation across multiple platforms.
โจ Features
- ๐ค Multi-Agent Pipeline: Planner โ Evidence Gatherer โ Synthesis โ Documentation โ Reviewer โ Docs Lookup โ Deployment
- ๐ Codebase Analysis: Upload folder (ZIP) or GitHub repo โ Auto-detect framework, dependencies, configs
- ๐ Context7 Documentation Integration: Automatic framework/platform documentation lookups
- ๐ง MCP Tool Integration: Real-time deployment signals from Hugging Face Spaces, Vercel, Context7, and GitHub
- ๐ Multi-Platform Deployment: Deploy to Vercel, Netlify, AWS, GCP, Azure, Railway, Render, Fly.io, Kubernetes, Docker
- ๐ Sponsor LLM Cross-Checks: Gemini 2.0 Flash + OpenAI GPT-4o mini for synthesis and validation
- ๐ Auto-Documentation: Generates changelog entries, README snippets, and announcement drafts
- โ Risk Assessment: Automated review with confidence scoring and actionable findings
๐ฅ 10 Major Utility Improvements
- ๐ Real-Time Deployment Monitoring: Track deployment status, stages, and logs in real-time
- ๐ Security Scanning: Scan dependencies for vulnerabilities and detect exposed secrets
- ๐ฐ Cost Estimation: Compare costs across platforms with optimization recommendations
- ๐ Environment Variable Validation: Validate env vars, detect missing required vars, security issues
- โก Performance Optimization: Framework-specific performance analysis and improvement suggestions
- ๐ CI/CD Pipeline Generation: Auto-generate GitHub Actions and GitLab CI configurations
- โฎ๏ธ Rollback Strategies: Generate rollback plans and disaster recovery procedures
- ๐ Multi-Environment Support: Deploy to dev/staging/production with environment-specific configs
- ๐ฅ Team Collaboration: Review sessions, stakeholder approvals, comments, and feedback
- ๐ Monitoring Integration: Setup recommendations for Sentry, New Relic, Datadog, and platform-native tools
๐๏ธ Architecture
Agents
- Planner Agent (Claude): Analyzes project context and generates deployment readiness checklist
- Evidence Agent (Claude + MCP): Gathers real deployment signals via MCP tools
- Synthesis Agent (Gemini/OpenAI): Cross-validates Claude's evidence to earn sponsor bonus points
- Documentation Agent (Claude): Generates deployment communications
- Reviewer Agent (Claude): Final risk assessment with confidence scoring
- Documentation Lookup Agent (Context7): Looks up framework/platform docs for:
- Deployment guides
- Dependency compatibility
- Config validation
- Runbook generation
- Environment variables
- Migration guides
- Observability setup
- Deployment Agent (GitHub): Prepares and executes deployment actions
MCP Tools Used
- Context7: Framework/platform documentation lookups
- Hugging Face Spaces: Status checks and validation
- Vercel: Deployment validation
- GitHub: Deployment PR creation and workflow triggers
- (Extensible to other MCP-compatible services)
๐ Quick Start
Set Environment Variables (in HF Space Secrets):
ANTHROPIC_API_KEY: Your Claude API key (required)GOOGLE_API_KEYorGEMINI_API_KEY: Enables Gemini sponsor synthesisOPENAI_API_KEY: Enables OpenAI sponsor synthesisSPONSOR_LLM_PRIORITY: Optional override (defaultgemini,openai)GEMINI_MODEL,OPENAI_MODEL: Optional model overridesHF_TOKEN: For Hugging Face MCP tools (optional)GITHUB_TOKEN: For GitHub deployment actions (optional)GITHUB_REPO: Repository in formatowner/repo(optional, for deployments)GITHUB_BRANCH: Branch name (default:main) (optional)
Upload & Analyze:
- Upload your project folder as ZIP, OR
- Enter GitHub repo URL
- Click "Analyze Codebase" to auto-detect framework and dependencies
Configure & Deploy:
- Review auto-filled project details
- Select deployment platform (Vercel, AWS, etc.)
- Choose environment (dev/staging/production)
- Click "Run Full Pipeline & Deploy"
- Review all utility reports (security, cost, performance, etc.)
- Deploy directly via MCP
๐ Example Usage
Project: Telemetry API
Release Goal: Enable adaptive sampling
Code Summary: Adds config surface, toggles feature flag, bumps schema version.
Stakeholders: eng, sre
The system will:
- Generate a deployment readiness plan
- Gather evidence via MCP tools
- Lookup framework/platform documentation via Context7
- Cross-validate evidence with sponsor LLMs
- Create documentation artifacts
- Prepare GitHub deployment actions (if configured)
- Provide final review with risk assessment
๐ฏ Hackathon Submission
Primary Tracks:
mcp-in-action-track-enterprise(MCP in Action - Enterprise)building-mcp-track-enterprise(Building MCP - Enterprise)
Multi-Track Compatibility:
- โ Track 1 (Building MCP): Functions as an MCP server with custom tools.
- โ Track 2 (MCP in Action): Autonomous multi-agent behavior with planning, reasoning, and execution via MCP tools.
- โ
LlamaIndex Prize: Integrated
RAGAgentusing LlamaIndex for codebase analysis. - โ OpenAI/Gemini Prizes: Uses OpenAI and Gemini for sponsor cross-checks.
Key Highlights:
- โ Autonomous multi-agent behavior with planning, reasoning, and execution
- โ MCP servers used as tools (Context7, HF Spaces, Vercel, GitHub)
- โ Context7 integration for comprehensive documentation lookups
- โ GitHub deployment actions for direct deployment execution
- โ
Gradio app with MCP server support (
mcp_server=True) - โ Sponsor LLM integration (Gemini, OpenAI) with configurable priority
- โ Real-world productivity use case for developers
- โ 10 utility improvements covering security, cost, performance, CI/CD, monitoring, and collaboration
๐ง Technical Stack
- Gradio 5.49.1: UI framework with MCP server support
- Anthropic Claude 3.5 Sonnet: Primary reasoning engine
- Google Gemini 2.0 Flash: Sponsor cross-validation
- OpenAI GPT-4o mini: Alternate sponsor cross-validation
- Hugging Face Hub: MCP client for tool integration
- Context7 MCP: Documentation lookup service
- GitHub & Vercel MCP: Deployment validation and workflow triggers
- LlamaIndex: RAG engine for codebase analysis
- Python 3.10+: Core runtime
๐ Secrets & API Keys
Add secrets in Hugging Face Space โ Settings โ Repository secrets:
| Secret | Purpose |
|---|---|
ANTHROPIC_API_KEY |
Required for Claude agents |
GOOGLE_API_KEY / GEMINI_API_KEY |
Enable Gemini sponsor synthesis |
OPENAI_API_KEY |
Enable OpenAI sponsor synthesis |
SPONSOR_LLM_PRIORITY |
Optional ordering, e.g. gemini,openai |
GEMINI_MODEL, OPENAI_MODEL |
Optional model overrides |
HF_TOKEN |
Optional Hugging Face MCP access |
GITHUB_TOKEN, GITHUB_REPO, GITHUB_BRANCH |
GitHub deployment actions |
๐ License
MIT License
๐ Social Media
[Link to your social media post about the project]
๐ฅ Demo Video
[Link to your demo video]
Built for MCP's 1st Birthday Hackathon ๐