Priyanshujha18's picture
feat: Hackathon compliance updates - LlamaIndex, Multi-track, Gradio 6
a8063f2

A newer version of the Gradio SDK is available: 6.1.0

Upgrade
metadata
title: Deploy Ready Copilot
emoji: ๐Ÿš€
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
tags:
  - mcp-in-action-track-enterprise
  - building-mcp-track-enterprise
  - gradio
  - claude
  - multi-agent
  - deployment
  - productivity
  - context7
  - github
  - vercel
  - mcp-server

๐Ÿš€ Deployment Readiness Copilot

Multi-agent AI system for deployment readiness validation and documentation generation

๐ŸŽฏ Overview

The Deployment Readiness Copilot is a productivity-focused, developer-centric tool that automates deployment readiness checks using a multi-agent architecture. It combines Claude's reasoning with sponsor LLM cross-checks and MCP tool integration to provide comprehensive pre-deployment validation across multiple platforms.

โœจ Features

  • ๐Ÿค– Multi-Agent Pipeline: Planner โ†’ Evidence Gatherer โ†’ Synthesis โ†’ Documentation โ†’ Reviewer โ†’ Docs Lookup โ†’ Deployment
  • ๐Ÿ“ Codebase Analysis: Upload folder (ZIP) or GitHub repo โ†’ Auto-detect framework, dependencies, configs
  • ๐Ÿ“š Context7 Documentation Integration: Automatic framework/platform documentation lookups
  • ๐Ÿ”ง MCP Tool Integration: Real-time deployment signals from Hugging Face Spaces, Vercel, Context7, and GitHub
  • ๐Ÿš€ Multi-Platform Deployment: Deploy to Vercel, Netlify, AWS, GCP, Azure, Railway, Render, Fly.io, Kubernetes, Docker
  • ๐ŸŽ“ Sponsor LLM Cross-Checks: Gemini 2.0 Flash + OpenAI GPT-4o mini for synthesis and validation
  • ๐Ÿ“ Auto-Documentation: Generates changelog entries, README snippets, and announcement drafts
  • โœ… Risk Assessment: Automated review with confidence scoring and actionable findings

๐Ÿ”ฅ 10 Major Utility Improvements

  1. ๐Ÿ“Š Real-Time Deployment Monitoring: Track deployment status, stages, and logs in real-time
  2. ๐Ÿ”’ Security Scanning: Scan dependencies for vulnerabilities and detect exposed secrets
  3. ๐Ÿ’ฐ Cost Estimation: Compare costs across platforms with optimization recommendations
  4. ๐Ÿ” Environment Variable Validation: Validate env vars, detect missing required vars, security issues
  5. โšก Performance Optimization: Framework-specific performance analysis and improvement suggestions
  6. ๐Ÿ”„ CI/CD Pipeline Generation: Auto-generate GitHub Actions and GitLab CI configurations
  7. โฎ๏ธ Rollback Strategies: Generate rollback plans and disaster recovery procedures
  8. ๐ŸŒ Multi-Environment Support: Deploy to dev/staging/production with environment-specific configs
  9. ๐Ÿ‘ฅ Team Collaboration: Review sessions, stakeholder approvals, comments, and feedback
  10. ๐Ÿ“Š Monitoring Integration: Setup recommendations for Sentry, New Relic, Datadog, and platform-native tools

๐Ÿ—๏ธ Architecture

Agents

  1. Planner Agent (Claude): Analyzes project context and generates deployment readiness checklist
  2. Evidence Agent (Claude + MCP): Gathers real deployment signals via MCP tools
  3. Synthesis Agent (Gemini/OpenAI): Cross-validates Claude's evidence to earn sponsor bonus points
  4. Documentation Agent (Claude): Generates deployment communications
  5. Reviewer Agent (Claude): Final risk assessment with confidence scoring
  6. Documentation Lookup Agent (Context7): Looks up framework/platform docs for:
    • Deployment guides
    • Dependency compatibility
    • Config validation
    • Runbook generation
    • Environment variables
    • Migration guides
    • Observability setup
  7. Deployment Agent (GitHub): Prepares and executes deployment actions

MCP Tools Used

  • Context7: Framework/platform documentation lookups
  • Hugging Face Spaces: Status checks and validation
  • Vercel: Deployment validation
  • GitHub: Deployment PR creation and workflow triggers
  • (Extensible to other MCP-compatible services)

๐Ÿš€ Quick Start

  1. Set Environment Variables (in HF Space Secrets):

    • ANTHROPIC_API_KEY: Your Claude API key (required)
    • GOOGLE_API_KEY or GEMINI_API_KEY: Enables Gemini sponsor synthesis
    • OPENAI_API_KEY: Enables OpenAI sponsor synthesis
    • SPONSOR_LLM_PRIORITY: Optional override (default gemini,openai)
    • GEMINI_MODEL, OPENAI_MODEL: Optional model overrides
    • HF_TOKEN: For Hugging Face MCP tools (optional)
    • GITHUB_TOKEN: For GitHub deployment actions (optional)
    • GITHUB_REPO: Repository in format owner/repo (optional, for deployments)
    • GITHUB_BRANCH: Branch name (default: main) (optional)
  2. Upload & Analyze:

    • Upload your project folder as ZIP, OR
    • Enter GitHub repo URL
    • Click "Analyze Codebase" to auto-detect framework and dependencies
  3. Configure & Deploy:

    • Review auto-filled project details
    • Select deployment platform (Vercel, AWS, etc.)
    • Choose environment (dev/staging/production)
    • Click "Run Full Pipeline & Deploy"
    • Review all utility reports (security, cost, performance, etc.)
    • Deploy directly via MCP

๐Ÿ“‹ Example Usage

Project: Telemetry API
Release Goal: Enable adaptive sampling
Code Summary: Adds config surface, toggles feature flag, bumps schema version.
Stakeholders: eng, sre

The system will:

  1. Generate a deployment readiness plan
  2. Gather evidence via MCP tools
  3. Lookup framework/platform documentation via Context7
  4. Cross-validate evidence with sponsor LLMs
  5. Create documentation artifacts
  6. Prepare GitHub deployment actions (if configured)
  7. Provide final review with risk assessment

๐ŸŽฏ Hackathon Submission

Primary Tracks:

  • mcp-in-action-track-enterprise (MCP in Action - Enterprise)
  • building-mcp-track-enterprise (Building MCP - Enterprise)

Multi-Track Compatibility:

  • โœ… Track 1 (Building MCP): Functions as an MCP server with custom tools.
  • โœ… Track 2 (MCP in Action): Autonomous multi-agent behavior with planning, reasoning, and execution via MCP tools.
  • โœ… LlamaIndex Prize: Integrated RAGAgent using LlamaIndex for codebase analysis.
  • โœ… OpenAI/Gemini Prizes: Uses OpenAI and Gemini for sponsor cross-checks.

Key Highlights:

  • โœ… Autonomous multi-agent behavior with planning, reasoning, and execution
  • โœ… MCP servers used as tools (Context7, HF Spaces, Vercel, GitHub)
  • โœ… Context7 integration for comprehensive documentation lookups
  • โœ… GitHub deployment actions for direct deployment execution
  • โœ… Gradio app with MCP server support (mcp_server=True)
  • โœ… Sponsor LLM integration (Gemini, OpenAI) with configurable priority
  • โœ… Real-world productivity use case for developers
  • โœ… 10 utility improvements covering security, cost, performance, CI/CD, monitoring, and collaboration

๐Ÿ”ง Technical Stack

  • Gradio 5.49.1: UI framework with MCP server support
  • Anthropic Claude 3.5 Sonnet: Primary reasoning engine
  • Google Gemini 2.0 Flash: Sponsor cross-validation
  • OpenAI GPT-4o mini: Alternate sponsor cross-validation
  • Hugging Face Hub: MCP client for tool integration
  • Context7 MCP: Documentation lookup service
  • GitHub & Vercel MCP: Deployment validation and workflow triggers
  • LlamaIndex: RAG engine for codebase analysis
  • Python 3.10+: Core runtime

๐Ÿ” Secrets & API Keys

Add secrets in Hugging Face Space โ†’ Settings โ†’ Repository secrets:

Secret Purpose
ANTHROPIC_API_KEY Required for Claude agents
GOOGLE_API_KEY / GEMINI_API_KEY Enable Gemini sponsor synthesis
OPENAI_API_KEY Enable OpenAI sponsor synthesis
SPONSOR_LLM_PRIORITY Optional ordering, e.g. gemini,openai
GEMINI_MODEL, OPENAI_MODEL Optional model overrides
HF_TOKEN Optional Hugging Face MCP access
GITHUB_TOKEN, GITHUB_REPO, GITHUB_BRANCH GitHub deployment actions

๐Ÿ“ License

MIT License

๐Ÿ”— Social Media

[Link to your social media post about the project]

๐ŸŽฅ Demo Video

[Link to your demo video]


Built for MCP's 1st Birthday Hackathon ๐ŸŽ‰