|
|
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
from datasets import load_dataset |
|
import torch |
|
import soundfile as sf |
|
from datasets import load_dataset |
|
from IPython.display import Audio |
|
import streamlit as st |
|
|
|
st.title("TTS-App") |
|
text = st.text_input('Donnez votre text à prédire: ', ' ') |
|
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") |
|
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
|
|
inputs = processor(text=text, return_tensors="pt") |
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) |
|
|
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) |
|
|
|
|
|
sf.write("speech.wav", speech.numpy(), samplerate=16000) |
|
|
|
|
|
audio_path="speech.wav" |
|
Audio(audio_path) |
|
st.audio(audio_path) |