from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from datasets import load_dataset import torch import soundfile as sf from datasets import load_dataset from IPython.display import Audio import streamlit as st st.title("TTS-App") text = st.text_input('Donnez votre text à prédire: ', ' ') processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # read input text from file inputs = processor(text=text, return_tensors="pt") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) #sf.write("VocalEminem.wav", speech.numpy(), samplerate=16000) sf.write("speech.wav", speech.numpy(), samplerate=16000) #audio_path = "VocalEminem.wav" audio_path="speech.wav" Audio(audio_path) st.audio(audio_path)