Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from torch.optim.optimizer import Optimizer | |
class AdaBelief(Optimizer): | |
r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-16) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
(default: False) | |
weight_decouple (boolean, optional): ( default: True) If set as True, then | |
the optimizer uses decoupled weight decay as in AdamW | |
fixed_decay (boolean, optional): (default: False) This is used when weight_decouple | |
is set as True. | |
When fixed_decay == True, the weight decay is performed as | |
$W_{new} = W_{old} - W_{old} \times decay$. | |
When fixed_decay == False, the weight decay is performed as | |
$W_{new} = W_{old} - W_{old} \times decay \times lr$. Note that in this case, the | |
weight decay ratio decreases with learning rate (lr). | |
rectify (boolean, optional): (default: True) If set as True, then perform the rectified | |
update similar to RAdam | |
degenerated_to_sgd (boolean, optional) (default:True) If set as True, then perform SGD update | |
when variance of gradient is high | |
reference: AdaBelief Optimizer, adapting stepsizes by the belief in observed gradients, NeurIPS 2020 | |
For a complete table of recommended hyperparameters, see https://github.com/juntang-zhuang/Adabelief-Optimizer' | |
For example train/args for EfficientNet see these gists | |
- link to train_scipt: https://gist.github.com/juntang-zhuang/0a501dd51c02278d952cf159bc233037 | |
- link to args.yaml: https://gist.github.com/juntang-zhuang/517ce3c27022b908bb93f78e4f786dc3 | |
""" | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16, | |
weight_decay=0, amsgrad=False, weight_decouple=True, fixed_decay=False, rectify=True, | |
degenerated_to_sgd=True): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
self.degenerated_to_sgd = degenerated_to_sgd | |
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): | |
for param in params: | |
if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): | |
param['buffer'] = [[None, None, None] for _ in range(10)] | |
defaults = dict(lr=lr, betas=betas, eps=eps, | |
weight_decay=weight_decay, amsgrad=amsgrad, buffer=[[None, None, None] for _ in range(10)]) | |
super(AdaBelief, self).__init__(params, defaults) | |
self.degenerated_to_sgd = degenerated_to_sgd | |
self.weight_decouple = weight_decouple | |
self.rectify = rectify | |
self.fixed_decay = fixed_decay | |
def __setstate__(self, state): | |
super(AdaBelief, self).__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault('amsgrad', False) | |
def reset(self): | |
for group in self.param_groups: | |
for p in group['params']: | |
state = self.state[p] | |
amsgrad = group['amsgrad'] | |
# State initialization | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_var'] = torch.zeros_like(p.data) | |
if amsgrad: | |
# Maintains max of all exp. moving avg. of sq. grad. values | |
state['max_exp_avg_var'] = torch.zeros_like(p.data) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
# cast data type | |
half_precision = False | |
if p.data.dtype == torch.float16: | |
half_precision = True | |
p.data = p.data.float() | |
p.grad = p.grad.float() | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError( | |
'AdaBelief does not support sparse gradients, please consider SparseAdam instead') | |
amsgrad = group['amsgrad'] | |
state = self.state[p] | |
beta1, beta2 = group['betas'] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_var'] = torch.zeros_like(p.data) | |
if amsgrad: | |
# Maintains max of all exp. moving avg. of sq. grad. values | |
state['max_exp_avg_var'] = torch.zeros_like(p.data) | |
# perform weight decay, check if decoupled weight decay | |
if self.weight_decouple: | |
if not self.fixed_decay: | |
p.data.mul_(1.0 - group['lr'] * group['weight_decay']) | |
else: | |
p.data.mul_(1.0 - group['weight_decay']) | |
else: | |
if group['weight_decay'] != 0: | |
grad.add_(p.data, alpha=group['weight_decay']) | |
# get current state variable | |
exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var'] | |
state['step'] += 1 | |
bias_correction1 = 1 - beta1 ** state['step'] | |
bias_correction2 = 1 - beta2 ** state['step'] | |
# Update first and second moment running average | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
grad_residual = grad - exp_avg | |
exp_avg_var.mul_(beta2).addcmul_( grad_residual, grad_residual, value=1 - beta2) | |
if amsgrad: | |
max_exp_avg_var = state['max_exp_avg_var'] | |
# Maintains the maximum of all 2nd moment running avg. till now | |
torch.max(max_exp_avg_var, exp_avg_var.add_(group['eps']), out=max_exp_avg_var) | |
# Use the max. for normalizing running avg. of gradient | |
denom = (max_exp_avg_var.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) | |
else: | |
denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) | |
# update | |
if not self.rectify: | |
# Default update | |
step_size = group['lr'] / bias_correction1 | |
p.data.addcdiv_( exp_avg, denom, value=-step_size) | |
else: # Rectified update, forked from RAdam | |
buffered = group['buffer'][int(state['step'] % 10)] | |
if state['step'] == buffered[0]: | |
N_sma, step_size = buffered[1], buffered[2] | |
else: | |
buffered[0] = state['step'] | |
beta2_t = beta2 ** state['step'] | |
N_sma_max = 2 / (1 - beta2) - 1 | |
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) | |
buffered[1] = N_sma | |
# more conservative since it's an approximated value | |
if N_sma >= 5: | |
step_size = math.sqrt( | |
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / ( | |
N_sma_max - 2)) / (1 - beta1 ** state['step']) | |
elif self.degenerated_to_sgd: | |
step_size = 1.0 / (1 - beta1 ** state['step']) | |
else: | |
step_size = -1 | |
buffered[2] = step_size | |
if N_sma >= 5: | |
denom = exp_avg_var.sqrt().add_(group['eps']) | |
p.data.addcdiv_(exp_avg, denom, value=-step_size * group['lr']) | |
elif step_size > 0: | |
p.data.add_( exp_avg, alpha=-step_size * group['lr']) | |
if half_precision: | |
p.data = p.data.half() | |
p.grad = p.grad.half() | |
return loss | |