Spaces:
Running
on
T4
Running
on
T4
"""modified from https://github.com/yesheng-THU/GFGE/blob/main/data_processing/audio_features.py""" | |
import numpy as np | |
import librosa | |
import math | |
import os | |
import scipy.io.wavfile as wav | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import copy | |
from tqdm import tqdm | |
from transformers import Wav2Vec2Model, Wav2Vec2Config | |
from transformers.modeling_outputs import BaseModelOutput | |
from typing import Optional, Tuple | |
_CONFIG_FOR_DOC = "Wav2Vec2Config" | |
# the implementation of Wav2Vec2Model is borrowed from https://huggingface.co/transformers/_modules/transformers/models/wav2vec2/modeling_wav2vec2.html#Wav2Vec2Model | |
# initialize our encoder with the pre-trained wav2vec 2.0 weights. | |
def _compute_mask_indices( | |
shape: Tuple[int, int], | |
mask_prob: float, | |
mask_length: int, | |
attention_mask: Optional[torch.Tensor] = None, | |
min_masks: int = 0, | |
) -> np.ndarray: | |
bsz, all_sz = shape | |
mask = np.full((bsz, all_sz), False) | |
all_num_mask = int( | |
mask_prob * all_sz / float(mask_length) | |
+ np.random.rand() | |
) | |
all_num_mask = max(min_masks, all_num_mask) | |
mask_idcs = [] | |
padding_mask = attention_mask.ne(1) if attention_mask is not None else None | |
for i in range(bsz): | |
if padding_mask is not None: | |
sz = all_sz - padding_mask[i].long().sum().item() | |
num_mask = int( | |
mask_prob * sz / float(mask_length) | |
+ np.random.rand() | |
) | |
num_mask = max(min_masks, num_mask) | |
else: | |
sz = all_sz | |
num_mask = all_num_mask | |
lengths = np.full(num_mask, mask_length) | |
if sum(lengths) == 0: | |
lengths[0] = min(mask_length, sz - 1) | |
min_len = min(lengths) | |
if sz - min_len <= num_mask: | |
min_len = sz - num_mask - 1 | |
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) | |
mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])]) | |
mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) | |
min_len = min([len(m) for m in mask_idcs]) | |
for i, mask_idc in enumerate(mask_idcs): | |
if len(mask_idc) > min_len: | |
mask_idc = np.random.choice(mask_idc, min_len, replace=False) | |
mask[i, mask_idc] = True | |
return mask | |
# linear interpolation layer | |
def linear_interpolation(features, input_fps, output_fps, output_len=None): | |
features = features.transpose(1, 2) | |
seq_len = features.shape[2] / float(input_fps) | |
if output_len is None: | |
output_len = int(seq_len * output_fps) | |
output_features = F.interpolate(features,size=output_len,align_corners=True,mode='linear') | |
return output_features.transpose(1, 2) | |
class Wav2Vec2Model(Wav2Vec2Model): | |
def __init__(self, config): | |
super().__init__(config) | |
self.audio_fps = 15 #args.audio_fps | |
#input_values 16K hz, 49fps, 20ms overlap, 25ms recepion field | |
def forward( | |
self, | |
input_values, | |
dataset="beat", | |
attention_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
frame_num=None | |
): | |
#print(input_values.shape) | |
self.config.output_attentions = True | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
hidden_states = self.feature_extractor(input_values) | |
hidden_states = hidden_states.transpose(1, 2) | |
#print(hidden_states.shape) | |
if dataset == "beat": | |
hidden_states = linear_interpolation(hidden_states, 49, self.audio_fps, output_len=frame_num) | |
#print(hidden_states.shape) | |
if attention_mask is not None: | |
output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) | |
attention_mask = torch.zeros( | |
hidden_states.shape[:2], dtype=hidden_states.dtype, device=hidden_states.device | |
) | |
attention_mask[ | |
(torch.arange(attention_mask.shape[0], device=hidden_states.device), output_lengths - 1) | |
] = 1 | |
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() | |
hidden_states = self.feature_projection(hidden_states)[0] | |
#print(hidden_states.shape) | |
if self.config.apply_spec_augment and self.training: | |
batch_size, sequence_length, hidden_size = hidden_states.size() | |
if self.config.mask_time_prob > 0: | |
mask_time_indices = _compute_mask_indices( | |
(batch_size, sequence_length), | |
self.config.mask_time_prob, | |
self.config.mask_time_length, | |
attention_mask=attention_mask, | |
min_masks=2, | |
) | |
hidden_states[torch.from_numpy(mask_time_indices)] = self.masked_spec_embed.to(hidden_states.dtype) | |
if self.config.mask_feature_prob > 0: | |
mask_feature_indices = _compute_mask_indices( | |
(batch_size, hidden_size), | |
self.config.mask_feature_prob, | |
self.config.mask_feature_length, | |
) | |
mask_feature_indices = torch.from_numpy(mask_feature_indices).to(hidden_states.device) | |
hidden_states[mask_feature_indices[:, None].expand(-1, sequence_length, -1)] = 0 | |
encoder_outputs = self.encoder( | |
hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = encoder_outputs[0] | |
#print(encoder_outputs.shape) | |
if not return_dict: | |
return (hidden_states,) + encoder_outputs[1:] | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
def extract_wav2vec2(file_folder, destpath, fps, inference_length=16000*20): | |
wav2vec_model = Wav2Vec2Model.from_pretrained("/home/ma-user/work/datasets/hub/transformer/wav2vec2-base-960h") | |
wav2vec_model.feature_extractor._freeze_parameters() | |
wav2vec_model = wav2vec_model.cuda() | |
wav2vec_model.eval() | |
audio_mean = np.load("/home/ma-user/work/datasets/beat_cache/beat_english_15_141/train/wave16k/npy_mean.npy") | |
audio_std = np.load("/home/ma-user/work/datasets/beat_cache/beat_english_15_141/train/wave16k/npy_std.npy") | |
if not os.path.exists(destpath): os.mkdir(destpath) | |
with torch.no_grad(): | |
for file_name in tqdm(os.listdir(file_folder)): | |
if "mean" in file_name or "std" in file_name or "pynb" in file_name: continue | |
audio_np = np.load(file_folder+file_name) | |
audio_np = (audio_np-audio_mean)/audio_std | |
audio_torch = torch.from_numpy(audio_np).cuda() | |
audio_torch = audio_torch.reshape(1, -1) | |
#print(audio_torch.shape, audio_np.shape) | |
if audio_torch.shape[1] > inference_length: | |
num_div = audio_torch.shape[1] // inference_length | |
remain = audio_torch.shape[1] % inference_length | |
for i in range(num_div): | |
audio_feat = wav2vec_model(audio_torch[:, i*inference_length:(i+1)*inference_length]).last_hidden_state.cpu().numpy().reshape(-1, 768) | |
if i == 0: | |
audio_feat_all = audio_feat | |
else: | |
audio_feat_all = np.concatenate((audio_feat_all, audio_feat), 0) | |
if remain > 1600: #0.25s | |
audio_feat = wav2vec_model(audio_torch[:, num_div*inference_length:num_div*inference_length+remain]).last_hidden_state.cpu().numpy().reshape(-1, 768) | |
audio_feat_all = np.concatenate((audio_feat_all, audio_feat), 0) | |
else: | |
audio_feat_all = wav2vec_model(audio_torch).last_hidden_state.cpu().numpy().reshape(-1, 768) | |
#print(audio_feat_all.shape, audio_np.shape[0]/16000*15, torch.cuda.memory_cached() / 1E9) | |
np.save(destpath+file_name, audio_feat_all) | |
def extract_melspec(file, destpath, fps, n_mels=128): | |
fs,X = wav.read(file) | |
X = X.astype(float)/math.pow(2,15) | |
target_sr = 48000 | |
X_48k = librosa.resample(X, orig_sr=fs, target_sr=target_sr, res_type="kaiser_best") | |
n_fft=int(target_sr*0.13) | |
hop_len=int(target_sr/fps) | |
C = librosa.feature.melspectrogram(y=X_48k, sr=target_sr, n_fft=n_fft, hop_length=hop_len, n_mels=n_mels, fmin=0.0, fmax=8000) | |
#C2 = librosa.feature.melspectrogram(y=X, sr=fs, n_fft=1024, hop_length=512) | |
#print(C.shape, C2.shape) | |
C = np.log(C) | |
np.save(destpath,np.transpose(C)) | |
if __name__ == "__main__": | |
#calculate mean and build cache for data. | |
target_fps = 15 | |
ori_data_path = f"/home/ma-user/work/datasets/beat_cache/beat_english_{target_fps}_141/" | |
for data_type in ["train", "val", "test"]: | |
extract_wav2vec2(ori_data_path+data_type+"/wave16k/", ori_data_path+data_type+f"/wav2vec2_{target_fps}/", target_fps) |