Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) HuaWei, Inc. and its affiliates. | |
# liu.haiyang@huawei.com | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch | |
import numpy as np | |
class GeodesicLoss(nn.Module): | |
def __init__(self): | |
super(GeodesicLoss, self).__init__() | |
def compute_geodesic_distance(self, m1, m2): | |
""" Compute the geodesic distance between two rotation matrices. | |
Args: | |
m1, m2: Two rotation matrices with the shape (batch x 3 x 3). | |
Returns: | |
The minimal angular difference between two rotation matrices in radian form [0, pi]. | |
""" | |
m1 = m1.reshape(-1, 3, 3) | |
m2 = m2.reshape(-1, 3, 3) | |
batch = m1.shape[0] | |
m = torch.bmm(m1, m2.transpose(1, 2)) # batch*3*3 | |
cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2 | |
cos = torch.clamp(cos, min=-1 + 1E-6, max=1-1E-6) | |
theta = torch.acos(cos) | |
return theta | |
def __call__(self, m1, m2, reduction='mean'): | |
loss = self.compute_geodesic_distance(m1, m2) | |
if reduction == 'mean': | |
return loss.mean() | |
elif reduction == 'none': | |
return loss | |
else: | |
raise RuntimeError(f'unsupported reduction: {reduction}') | |
class BCE_Loss(nn.Module): | |
def __init__(self, args=None): | |
super(BCE_Loss, self).__init__() | |
def forward(self, fake_outputs, real_target): | |
final_loss = F.cross_entropy(fake_outputs, real_target, reduce="mean") | |
return final_loss | |
class weight_Loss(nn.Module): | |
def __init__(self, args=None): | |
super(weight_Loss, self).__init__() | |
def forward(self, weight_f): | |
weight_loss_div = torch.mean(weight_f[:, :, 0]*weight_f[:, :, 1]) | |
weight_loss_gap = torch.mean(-torch.log(torch.max(weight_f[:, :, 0], dim=1)[0] - torch.min(weight_f[:, :, 0], dim=1)[0])) | |
return weight_loss_div, weight_loss_gap | |
class HuberLoss(nn.Module): | |
def __init__(self, beta=0.1, reduction="mean"): | |
super(HuberLoss, self).__init__() | |
self.beta = beta | |
self.reduction = reduction | |
def forward(self, outputs, targets): | |
final_loss = F.smooth_l1_loss(outputs / self.beta, targets / self.beta, reduction=self.reduction) * self.beta | |
return final_loss | |
class KLDLoss(nn.Module): | |
def __init__(self, beta=0.1): | |
super(KLDLoss, self).__init__() | |
self.beta = beta | |
def forward(self, outputs, targets): | |
final_loss = F.smooth_l1_loss((outputs / self.beta, targets / self.beta) * self.beta) | |
return final_loss | |
class REGLoss(nn.Module): | |
def __init__(self, beta=0.1): | |
super(REGLoss, self).__init__() | |
self.beta = beta | |
def forward(self, outputs, targets): | |
final_loss = F.smooth_l1_loss((outputs / self.beta, targets / self.beta) * self.beta) | |
return final_loss | |
class L2Loss(nn.Module): | |
def __init__(self): | |
super(L2Loss, self).__init__() | |
def forward(self, outputs, targets): | |
final_loss = F.l2_loss(outputs, targets) | |
return final_loss | |
LOSS_FUNC_LUT = { | |
"bce_loss": BCE_Loss, | |
"l2_loss": L2Loss, | |
"huber_loss": HuberLoss, | |
"kl_loss": KLDLoss, | |
"id_loss": REGLoss, | |
"GeodesicLoss": GeodesicLoss, | |
"weight_Loss": weight_Loss, | |
} | |
def get_loss_func(loss_name, **kwargs): | |
loss_func_class = LOSS_FUNC_LUT.get(loss_name) | |
loss_func = loss_func_class(**kwargs) | |
return loss_func | |