Spaces:
Sleeping
Sleeping
import random | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn.utils import weight_norm | |
import torch.nn.functional as F | |
from .build_vocab import Vocab | |
class Chomp1d(nn.Module): | |
def __init__(self, chomp_size): | |
super(Chomp1d, self).__init__() | |
self.chomp_size = chomp_size | |
def forward(self, x): | |
return x[:, :, :-self.chomp_size].contiguous() | |
class TemporalBlock(nn.Module): | |
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): | |
super(TemporalBlock, self).__init__() | |
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size, | |
stride=stride, padding=padding, dilation=dilation)) | |
self.chomp1 = Chomp1d(padding) | |
self.relu1 = nn.ReLU() | |
self.dropout1 = nn.Dropout(dropout) | |
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size, | |
stride=stride, padding=padding, dilation=dilation)) | |
self.chomp2 = Chomp1d(padding) | |
self.relu2 = nn.ReLU() | |
self.dropout2 = nn.Dropout(dropout) | |
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1, | |
self.conv2, self.chomp2, self.relu2, self.dropout2) | |
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None | |
self.relu = nn.ReLU() | |
self.init_weights() | |
def init_weights(self): | |
self.conv1.weight.data.normal_(0, 0.01) | |
self.conv2.weight.data.normal_(0, 0.01) | |
if self.downsample is not None: | |
self.downsample.weight.data.normal_(0, 0.01) | |
def forward(self, x): | |
out = self.net(x) | |
res = x if self.downsample is None else self.downsample(x) | |
return self.relu(out + res) | |
class TemporalConvNet(nn.Module): | |
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): | |
super(TemporalConvNet, self).__init__() | |
layers = [] | |
num_levels = len(num_channels) | |
for i in range(num_levels): | |
dilation_size = 2 ** i | |
in_channels = num_inputs if i == 0 else num_channels[i-1] | |
out_channels = num_channels[i] | |
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size, | |
padding=(kernel_size-1) * dilation_size, dropout=dropout)] | |
self.network = nn.Sequential(*layers) | |
def forward(self, x): | |
return self.network(x) | |
class TextEncoderTCN(nn.Module): | |
""" based on https://github.com/locuslab/TCN/blob/master/TCN/word_cnn/model.py """ | |
def __init__(self, args, n_words=11195, embed_size=300, pre_trained_embedding=None, | |
kernel_size=2, dropout=0.3, emb_dropout=0.1, word_cache=False): | |
super(TextEncoderTCN, self).__init__() | |
# if word_cache: | |
# self.embedding = None | |
# else: | |
# if pre_trained_embedding is not None: # use pre-trained embedding (fasttext) | |
# #print(pre_trained_embedding.shape) | |
# assert pre_trained_embedding.shape[0] == n_words | |
# assert pre_trained_embedding.shape[1] == embed_size | |
# self.embedding = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding), | |
# freeze=args.freeze_wordembed) | |
# else: | |
# self.embedding = nn.Embedding(n_words, embed_size) | |
num_channels = [args.hidden_size] #* args.n_layer | |
self.tcn = TemporalConvNet(embed_size, num_channels, kernel_size, dropout=dropout) | |
self.decoder = nn.Linear(num_channels[-1], args.word_f) | |
self.drop = nn.Dropout(emb_dropout) | |
#self.emb_dropout = emb_dropout | |
self.init_weights() | |
def init_weights(self): | |
self.decoder.bias.data.fill_(0) | |
self.decoder.weight.data.normal_(0, 0.01) | |
def forward(self, input): | |
#print(input.shape) | |
# if self.embedding is None: | |
# emb = self.drop(input) | |
# else: | |
# emb = self.drop(self.embedding(input)) | |
y = self.tcn(input.transpose(1, 2)).transpose(1, 2) | |
y = self.decoder(y) | |
return y, torch.max(y, dim=1)[0] | |
def reparameterize(mu, logvar): | |
std = torch.exp(0.5 * logvar) | |
eps = torch.randn_like(std) | |
return mu + eps * std | |
def ConvNormRelu(in_channels, out_channels, downsample=False, padding=0, batchnorm=True): | |
if not downsample: | |
k = 3 | |
s = 1 | |
else: | |
k = 4 | |
s = 2 | |
conv_block = nn.Conv1d(in_channels, out_channels, kernel_size=k, stride=s, padding=padding) | |
norm_block = nn.BatchNorm1d(out_channels) | |
if batchnorm: | |
net = nn.Sequential( | |
conv_block, | |
norm_block, | |
nn.LeakyReLU(0.2, True) | |
) | |
else: | |
net = nn.Sequential( | |
conv_block, | |
nn.LeakyReLU(0.2, True) | |
) | |
return net | |
class BasicBlock(nn.Module): | |
""" based on timm: https://github.com/rwightman/pytorch-image-models """ | |
def __init__(self, inplanes, planes, ker_size, stride=1, downsample=None, cardinality=1, base_width=64, | |
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm1d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = nn.Conv1d( | |
inplanes, planes, kernel_size=ker_size, stride=stride, padding=first_dilation, | |
dilation=dilation, bias=True) | |
self.bn1 = norm_layer(planes) | |
self.act1 = act_layer(inplace=True) | |
self.conv2 = nn.Conv1d( | |
planes, planes, kernel_size=ker_size, padding=ker_size//2, dilation=dilation, bias=True) | |
self.bn2 = norm_layer(planes) | |
self.act2 = act_layer(inplace=True) | |
if downsample is not None: | |
self.downsample = nn.Sequential( | |
nn.Conv1d(inplanes, planes, stride=stride, kernel_size=ker_size, padding=first_dilation, dilation=dilation, bias=True), | |
norm_layer(planes), | |
) | |
else: self.downsample=None | |
self.stride = stride | |
self.dilation = dilation | |
self.drop_block = drop_block | |
self.drop_path = drop_path | |
def zero_init_last_bn(self): | |
nn.init.zeros_(self.bn2.weight) | |
def forward(self, x): | |
shortcut = x | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
if self.downsample is not None: | |
shortcut = self.downsample(shortcut) | |
x += shortcut | |
x = self.act2(x) | |
return x | |
def init_weight(m): | |
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d): | |
nn.init.xavier_normal_(m.weight) | |
# m.bias.data.fill_(0.01) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def init_weight_skcnn(m): | |
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d): | |
nn.init.kaiming_uniform_(m.weight, a=math.sqrt(5)) | |
# m.bias.data.fill_(0.01) | |
if m.bias is not None: | |
#nn.init.constant_(m.bias, 0) | |
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight) | |
bound = 1 / math.sqrt(fan_in) | |
nn.init.uniform_(m.bias, -bound, bound) | |
class ResBlock(nn.Module): | |
def __init__(self, channel): | |
super(ResBlock, self).__init__() | |
self.model = nn.Sequential( | |
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), | |
) | |
def forward(self, x): | |
residual = x | |
out = self.model(x) | |
out += residual | |
return out | |