Spaces:
Running
on
T4
Running
on
T4
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Quantizer(nn.Module): | |
def __init__(self, n_e, e_dim, beta): | |
super(Quantizer, self).__init__() | |
self.e_dim = e_dim | |
self.n_e = n_e | |
self.beta = beta | |
self.embedding = nn.Embedding(self.n_e, self.e_dim) | |
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
def forward(self, z): | |
""" | |
Inputs the output of the encoder network z and maps it to a discrete | |
one-hot vectort that is the index of the closest embedding vector e_j | |
z (continuous) -> z_q (discrete) | |
:param z (B, seq_len, channel): | |
:return z_q: | |
""" | |
assert z.shape[-1] == self.e_dim | |
z_flattened = z.contiguous().view(-1, self.e_dim) | |
# B x V | |
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ | |
torch.sum(self.embedding.weight**2, dim=1) - 2 * \ | |
torch.matmul(z_flattened, self.embedding.weight.t()) | |
# B x 1 | |
min_encoding_indices = torch.argmin(d, dim=1) | |
z_q = self.embedding(min_encoding_indices).view(z.shape) | |
# compute loss for embedding | |
loss = torch.mean((z_q - z.detach())**2) + self.beta * \ | |
torch.mean((z_q.detach() - z)**2) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype) | |
e_mean = torch.mean(min_encodings, dim=0) | |
perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean + 1e-10))) | |
return loss, z_q, min_encoding_indices, perplexity | |
def map2index(self, z): | |
""" | |
Inputs the output of the encoder network z and maps it to a discrete | |
one-hot vectort that is the index of the closest embedding vector e_j | |
z (continuous) -> z_q (discrete) | |
:param z (B, seq_len, channel): | |
:return z_q: | |
""" | |
assert z.shape[-1] == self.e_dim | |
#print(z.shape) | |
z_flattened = z.contiguous().view(-1, self.e_dim) | |
#print(z_flattened.shape) | |
# B x V | |
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ | |
torch.sum(self.embedding.weight**2, dim=1) - 2 * \ | |
torch.matmul(z_flattened, self.embedding.weight.t()) | |
# B x 1 | |
min_encoding_indices = torch.argmin(d, dim=1) | |
return min_encoding_indices.reshape(z.shape[0], -1) | |
def get_codebook_entry(self, indices): | |
""" | |
:param indices(B, seq_len): | |
:return z_q(B, seq_len, e_dim): | |
""" | |
index_flattened = indices.view(-1) | |
z_q = self.embedding(index_flattened) | |
z_q = z_q.view(indices.shape + (self.e_dim, )).contiguous() | |
return z_q | |
class EmbeddingEMA(nn.Module): | |
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5): | |
super(EmbeddingEMA, self).__init__() | |
self.decay = decay | |
self.eps = eps | |
weight = torch.randn(num_tokens, codebook_dim) | |
self.weight = nn.Parameter(weight, requires_grad=False) | |
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False) | |
self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False) | |
self.update = True | |
def forward(self, embed_id): | |
return F.embedding(embed_id, self.weight) | |
def cluster_size_ema_update(self, new_cluster_size): | |
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay) | |
def embed_avg_ema_update(self, new_emb_avg): | |
self.embed_avg.data.mul_(self.decay).add(new_emb_avg, alpha=1 - self.decay) | |
def weight_update(self, num_tokens): | |
n = self.cluster_size.sum() | |
smoothed_cluster_size = ( | |
(self.cluster_size + self.eps) / (n + num_tokens*self.eps) * n | |
) | |
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) | |
self.weight.data.copy_(embed_normalized) | |
class EMAVectorQuantizer(nn.Module): | |
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5): | |
super(EMAVectorQuantizer, self).__init__() | |
self.codebook_dim = embedding_dim | |
self.num_tokens = n_embed | |
self.beta = beta | |
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps) | |
def forward(self, z): | |
z_flattened = z.view(-1, self.codebook_dim) | |
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ | |
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ | |
torch.matmul(z_flattened, self.embedding.weight.t()) | |
min_encoding_indices = torch.argmin(d, dim=1) | |
z_q = self.embedding(min_encoding_indices).view(z.shape) | |
min_encodings = F.one_hot(min_encoding_indices, self.num_tokens).type(z.dtype) | |
e_mean = torch.mean(min_encodings, dim=0) | |
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) | |
if self.training and self.embedding.update: | |
encoding_sum = min_encodings.sum(0) | |
embed_sum = min_encodings.transpose(0, 1)@z_flattened | |
self.embedding.cluster_size_ema_update(encoding_sum) | |
self.embedding.embed_avg_ema_update(embed_sum) | |
self.embedding.weight_update(self.num_tokens) | |
loss = self.beta * F.mse_loss(z_q.detach(), z) | |
z_q = z + (z_q - z).detach() | |
return loss, z_q, min_encoding_indices, perplexity | |
# class GumbelQuantizer(nn.Module): | |
# def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True, | |
# kl_weight=5e-4, temp_init=1.0): | |
# super(GumbelQuantizer, self).__init__() | |
# | |
# self.embedding_dim = embedding_dim | |
# self.n_embed = n_embed | |
# | |
# self.straight_through = straight_through | |
# self.temperature = temp_init | |
# self.kl_weight = kl_weight | |
# | |
# self.proj = nn.Linear(num_hiddens, n_embed) | |
# self.embed = nn.Embedding(n_embed, embedding_dim) | |