Spaces:
Starting
on
T4
Starting
on
T4
import random | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import smplx | |
import copy | |
from .motion_encoder import * | |
# ----------- AE, VAE ------------- # | |
class VAEConvZero(nn.Module): | |
def __init__(self, args): | |
super(VAEConvZero, self).__init__() | |
self.encoder = VQEncoderV5(args) | |
# self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
self.decoder = VQDecoderV5(args) | |
def forward(self, inputs): | |
pre_latent = self.encoder(inputs) | |
# print(pre_latent.shape) | |
# embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
rec_pose = self.decoder(pre_latent) | |
return { | |
# "poses_feat":vq_latent, | |
# "embedding_loss":embedding_loss, | |
# "perplexity":perplexity, | |
"rec_pose": rec_pose | |
} | |
class VAEConv(nn.Module): | |
def __init__(self, args): | |
super(VAEConv, self).__init__() | |
self.encoder = VQEncoderV3(args) | |
self.decoder = VQDecoderV3(args) | |
self.fc_mu = nn.Linear(args.vae_length, args.vae_length) | |
self.fc_logvar = nn.Linear(args.vae_length, args.vae_length) | |
self.variational = args.variational | |
def forward(self, inputs): | |
pre_latent = self.encoder(inputs) | |
mu, logvar = None, None | |
if self.variational: | |
mu = self.fc_mu(pre_latent) | |
logvar = self.fc_logvar(pre_latent) | |
pre_latent = reparameterize(mu, logvar) | |
rec_pose = self.decoder(pre_latent) | |
return { | |
"poses_feat":pre_latent, | |
"rec_pose": rec_pose, | |
"pose_mu": mu, | |
"pose_logvar": logvar, | |
} | |
def map2latent(self, inputs): | |
pre_latent = self.encoder(inputs) | |
if self.variational: | |
mu = self.fc_mu(pre_latent) | |
logvar = self.fc_logvar(pre_latent) | |
pre_latent = reparameterize(mu, logvar) | |
return pre_latent | |
def decode(self, pre_latent): | |
rec_pose = self.decoder(pre_latent) | |
return rec_pose | |
class VAESKConv(VAEConv): | |
def __init__(self, args): | |
super(VAESKConv, self).__init__(args) | |
smpl_fname = args.data_path_1+'smplx_models/smplx/SMPLX_NEUTRAL_2020.npz' | |
smpl_data = np.load(smpl_fname, encoding='latin1') | |
parents = smpl_data['kintree_table'][0].astype(np.int32) | |
edges = build_edge_topology(parents) | |
self.encoder = LocalEncoder(args, edges) | |
self.decoder = VQDecoderV3(args) | |
class VAEConvMLP(VAEConv): | |
def __init__(self, args): | |
super(VAEConvMLP, self).__init__(args) | |
self.encoder = PoseEncoderConv(args.vae_test_len, args.vae_test_dim, feature_length=args.vae_length) | |
self.decoder = PoseDecoderConv(args.vae_test_len, args.vae_test_dim, feature_length=args.vae_length) | |
class VAELSTM(VAEConv): | |
def __init__(self, args): | |
super(VAELSTM, self).__init__(args) | |
pose_dim = args.vae_test_dim | |
feature_length = args.vae_length | |
self.encoder = PoseEncoderLSTM_Resnet(pose_dim, feature_length=feature_length) | |
self.decoder = PoseDecoderLSTM(pose_dim, feature_length=feature_length) | |
class VAETransformer(VAEConv): | |
def __init__(self, args): | |
super(VAETransformer, self).__init__(args) | |
self.encoder = Encoder_TRANSFORMER(args) | |
self.decoder = Decoder_TRANSFORMER(args) | |
# ----------- VQVAE --------------- # | |
class VQVAEConv(nn.Module): | |
def __init__(self, args): | |
super(VQVAEConv, self).__init__() | |
self.encoder = VQEncoderV3(args) | |
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
self.decoder = VQDecoderV3(args) | |
def forward(self, inputs): | |
pre_latent = self.encoder(inputs) | |
# print(pre_latent.shape) | |
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
rec_pose = self.decoder(vq_latent) | |
return { | |
"poses_feat":vq_latent, | |
"embedding_loss":embedding_loss, | |
"perplexity":perplexity, | |
"rec_pose": rec_pose | |
} | |
def map2index(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
return index | |
def map2latent(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
z_q = self.quantizer.get_codebook_entry(index) | |
return z_q | |
def decode(self, index): | |
z_q = self.quantizer.get_codebook_entry(index) | |
rec_pose = self.decoder(z_q) | |
return rec_pose | |
class VQVAESKConv(VQVAEConv): | |
def __init__(self, args): | |
super(VQVAESKConv, self).__init__(args) | |
smpl_fname = args.data_path_1+'smplx_models/smplx/SMPLX_NEUTRAL_2020.npz' | |
smpl_data = np.load(smpl_fname, encoding='latin1') | |
parents = smpl_data['kintree_table'][0].astype(np.int32) | |
edges = build_edge_topology(parents) | |
self.encoder = LocalEncoder(args, edges) | |
class VQVAEConvStride(nn.Module): | |
def __init__(self, args): | |
super(VQVAEConvStride, self).__init__() | |
self.encoder = VQEncoderV4(args) | |
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
self.decoder = VQDecoderV4(args) | |
def forward(self, inputs): | |
pre_latent = self.encoder(inputs) | |
# print(pre_latent.shape) | |
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
rec_pose = self.decoder(vq_latent) | |
return { | |
"poses_feat":vq_latent, | |
"embedding_loss":embedding_loss, | |
"perplexity":perplexity, | |
"rec_pose": rec_pose | |
} | |
def map2index(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
return index | |
def map2latent(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
z_q = self.quantizer.get_codebook_entry(index) | |
return z_q | |
def decode(self, index): | |
z_q = self.quantizer.get_codebook_entry(index) | |
rec_pose = self.decoder(z_q) | |
return rec_pose | |
class VQVAEConvZero(nn.Module): | |
def __init__(self, args): | |
super(VQVAEConvZero, self).__init__() | |
self.encoder = VQEncoderV5(args) | |
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
self.decoder = VQDecoderV5(args) | |
def forward(self, inputs): | |
pre_latent = self.encoder(inputs) | |
# print(pre_latent.shape) | |
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
rec_pose = self.decoder(vq_latent) | |
return { | |
"poses_feat":vq_latent, | |
"embedding_loss":embedding_loss, | |
"perplexity":perplexity, | |
"rec_pose": rec_pose | |
} | |
def map2index(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
return index | |
def map2latent(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
z_q = self.quantizer.get_codebook_entry(index) | |
return z_q | |
def decode(self, index): | |
z_q = self.quantizer.get_codebook_entry(index) | |
rec_pose = self.decoder(z_q) | |
return rec_pose | |
class VAEConvZero(nn.Module): | |
def __init__(self, args): | |
super(VAEConvZero, self).__init__() | |
self.encoder = VQEncoderV5(args) | |
# self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
self.decoder = VQDecoderV5(args) | |
def forward(self, inputs): | |
pre_latent = self.encoder(inputs) | |
# print(pre_latent.shape) | |
# embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
rec_pose = self.decoder(pre_latent) | |
return { | |
# "poses_feat":vq_latent, | |
# "embedding_loss":embedding_loss, | |
# "perplexity":perplexity, | |
"rec_pose": rec_pose | |
} | |
# def map2index(self, inputs): | |
# pre_latent = self.encoder(inputs) | |
# index = self.quantizer.map2index(pre_latent) | |
# return index | |
# def map2latent(self, inputs): | |
# pre_latent = self.encoder(inputs) | |
# index = self.quantizer.map2index(pre_latent) | |
# z_q = self.quantizer.get_codebook_entry(index) | |
# return z_q | |
# def decode(self, index): | |
# z_q = self.quantizer.get_codebook_entry(index) | |
# rec_pose = self.decoder(z_q) | |
# return rec_pose | |
class VQVAEConvZero3(nn.Module): | |
def __init__(self, args): | |
super(VQVAEConvZero3, self).__init__() | |
self.encoder = VQEncoderV5(args) | |
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
self.decoder = VQDecoderV5(args) | |
def forward(self, inputs): | |
pre_latent = self.encoder(inputs) | |
# print(pre_latent.shape) | |
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
rec_pose = self.decoder(vq_latent) | |
return { | |
"poses_feat":vq_latent, | |
"embedding_loss":embedding_loss, | |
"perplexity":perplexity, | |
"rec_pose": rec_pose | |
} | |
def map2index(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
return index | |
def map2latent(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
z_q = self.quantizer.get_codebook_entry(index) | |
return z_q | |
def decode(self, index): | |
z_q = self.quantizer.get_codebook_entry(index) | |
rec_pose = self.decoder(z_q) | |
return rec_pose | |
class VQVAEConvZero2(nn.Module): | |
def __init__(self, args): | |
super(VQVAEConvZero2, self).__init__() | |
self.encoder = VQEncoderV5(args) | |
self.quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
self.decoder = VQDecoderV7(args) | |
def forward(self, inputs): | |
pre_latent = self.encoder(inputs) | |
# print(pre_latent.shape) | |
embedding_loss, vq_latent, _, perplexity = self.quantizer(pre_latent) | |
rec_pose = self.decoder(vq_latent) | |
return { | |
"poses_feat":vq_latent, | |
"embedding_loss":embedding_loss, | |
"perplexity":perplexity, | |
"rec_pose": rec_pose | |
} | |
def map2index(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
return index | |
def map2latent(self, inputs): | |
pre_latent = self.encoder(inputs) | |
index = self.quantizer.map2index(pre_latent) | |
z_q = self.quantizer.get_codebook_entry(index) | |
return z_q | |
def decode(self, index): | |
z_q = self.quantizer.get_codebook_entry(index) | |
rec_pose = self.decoder(z_q) | |
return rec_pose | |
class VQVAE2(nn.Module): | |
def __init__(self, args): | |
super(VQVAE2, self).__init__() | |
# Bottom-level encoder and decoder | |
args_bottom = copy.deepcopy(args) | |
args_bottom.vae_layer = 2 | |
self.bottom_encoder = VQEncoderV6(args_bottom) | |
self.bottom_quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
args_bottom.vae_test_dim = args.vae_test_dim | |
self.bottom_decoder = VQDecoderV6(args_bottom) | |
# Top-level encoder and decoder | |
args_top = copy.deepcopy(args) | |
args_top.vae_layer = 3 | |
args_top.vae_test_dim = args.vae_length | |
self.top_encoder = VQEncoderV3(args_top) # Adjust according to the top level's design | |
self.quantize_conv_t = nn.Conv1d(args.vae_length+args.vae_length, args.vae_length, 1) | |
self.top_quantizer = Quantizer(args.vae_codebook_size, args.vae_length, args.vae_quantizer_lambda) | |
# self.upsample_t_up = nn.Upsample(scale_factor=2, mode='nearest') | |
layers = [ | |
nn.Upsample(scale_factor=2, mode='nearest'), | |
nn.Conv1d(args.vae_length, args.vae_length, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Upsample(scale_factor=2, mode='nearest'), | |
nn.Conv1d(args.vae_length, args.vae_length, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Upsample(scale_factor=2, mode='nearest'), | |
nn.Conv1d(args.vae_length, args.vae_length, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.2, inplace=True) | |
] | |
self.upsample_t= nn.Sequential(*layers) | |
self.top_decoder = VQDecoderV3(args_top) # Adjust to handle top level features appropriately | |
def forward(self, inputs): | |
# Bottom-level processing | |
enc_b = self.bottom_encoder(inputs) | |
enc_t = self.top_encoder(enc_b) | |
#print(enc_b.shape, enc_t.shape) | |
top_embedding_loss, quant_t, _, top_perplexity = self.top_quantizer(enc_t) | |
#print(quant_t.shape) | |
dec_t = self.top_decoder(quant_t) | |
#print(dec_t.shape) | |
enc_b = torch.cat([dec_t, enc_b], dim=2).permute(0,2,1) | |
#print(enc_b.shape) | |
quant_b = self.quantize_conv_t(enc_b).permute(0,2,1) | |
#print("5",quant_b.shape) | |
bottom_embedding_loss, quant_b, _, bottom_perplexity = self.bottom_quantizer(quant_b) | |
#print("6",quant_b.shape) | |
upsample_t = self.upsample_t(quant_t.permute(0,2,1)).permute(0,2,1) | |
#print("7",upsample_t.shape) | |
quant = torch.cat([upsample_t, quant_b], 2) | |
rec_pose = self.bottom_decoder(quant) | |
# print(quant_t.shape, quant_b.shape, rec_pose.shape) | |
return { | |
"poses_feat_top": quant_t, | |
"pose_feat_bottom": quant_b, | |
"embedding_loss":top_embedding_loss+bottom_embedding_loss, | |
#"perplexity":perplexity, | |
"rec_pose": rec_pose | |
} | |
def map2index(self, inputs): | |
enc_b = self.bottom_encoder(inputs) | |
enc_t = self.top_encoder(enc_b) | |
_, quant_t, _, _ = self.top_quantizer(enc_t) | |
top_index = self.top_quantizer.map2index(enc_t) | |
dec_t = self.top_decoder(quant_t) | |
enc_b = torch.cat([dec_t, enc_b], dim=2).permute(0,2,1) | |
#print(enc_b.shape) | |
quant_b = self.quantize_conv_t(enc_b).permute(0,2,1) | |
# quant_b = self.quantize_conv_t(enc_b) | |
bottom_index = self.bottom_quantizer.map2index(quant_b) | |
return top_index, bottom_index | |
def get_top_laent(self, top_index): | |
z_q_top = self.top_quantizer.get_codebook_entry(top_index) | |
return z_q_top | |
def map2latent(self, inputs): | |
enc_b = self.bottom_encoder(inputs) | |
enc_t = self.top_encoder(enc_b) | |
_, quant_t, _, _ = self.top_quantizer(enc_t) | |
top_index = self.top_quantizer.map2index(enc_t) | |
dec_t = self.top_decoder(quant_t) | |
enc_b = torch.cat([dec_t, enc_b], dim=2).permute(0,2,1) | |
#print(enc_b.shape) | |
quant_b = self.quantize_conv_t(enc_b).permute(0,2,1) | |
# quant_b = self.quantize_conv_t(enc_b) | |
bottom_index = self.bottom_quantizer.map2index(quant_b) | |
z_q_top = self.top_quantizer.get_codebook_entry(top_index) | |
z_q_bottom = self.bottom_quantizer.get_codebook_entry(bottom_index) | |
return z_q_top, z_q_bottom | |
def map2latent_top(self, inputs): | |
enc_b = self.bottom_encoder(inputs) | |
enc_t = self.top_encoder(enc_b) | |
top_index = self.top_quantizer.map2index(enc_t) | |
z_q_top = self.top_quantizer.get_codebook_entry(top_index) | |
return z_q_top | |
def decode(self, top_index, bottom_index): | |
quant_t = self.top_quantizer.get_codebook_entry(top_index) | |
quant_b = self.bottom_quantizer.get_codebook_entry(bottom_index) | |
upsample_t = self.upsample_t(quant_t.permute(0,2,1)).permute(0,2,1) | |
#print("7",upsample_t.shape) | |
quant = torch.cat([upsample_t, quant_b], 2) | |
rec_pose = self.bottom_decoder(quant) | |
return rec_pose |