Spaces:
Running
on
T4
Running
on
T4
import os | |
import pickle | |
import math | |
import shutil | |
import numpy as np | |
import lmdb as lmdb | |
import textgrid as tg | |
import pandas as pd | |
import torch | |
import glob | |
import json | |
from termcolor import colored | |
from loguru import logger | |
from collections import defaultdict | |
from torch.utils.data import Dataset | |
import torch.distributed as dist | |
import pyarrow | |
import librosa | |
import smplx | |
from .build_vocab import Vocab | |
from .utils.audio_features import Wav2Vec2Model | |
from .data_tools import joints_list | |
from .utils import rotation_conversions as rc | |
from .utils import other_tools | |
class CustomDataset(Dataset): | |
def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True): | |
self.args = args | |
self.loader_type = loader_type | |
self.rank = dist.get_rank() | |
self.ori_stride = self.args.stride | |
self.ori_length = self.args.pose_length | |
self.alignment = [0,0] # for trinity | |
self.ori_joint_list = joints_list[self.args.ori_joints] | |
self.tar_joint_list = joints_list[self.args.tar_joints] | |
if 'smplx' in self.args.pose_rep: | |
self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
self.joints = len(list(self.tar_joint_list.keys())) | |
for joint_name in self.tar_joint_list: | |
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
else: | |
self.joints = len(list(self.ori_joint_list.keys()))+1 | |
self.joint_mask = np.zeros(self.joints*3) | |
for joint_name in self.tar_joint_list: | |
if joint_name == "Hips": | |
self.joint_mask[3:6] = 1 | |
else: | |
self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
# select trainable joints | |
split_rule = pd.read_csv(args.data_path+"train_test_split.csv") | |
self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] | |
if args.additional_data and loader_type == 'train': | |
split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] | |
#self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] | |
self.selected_file = pd.concat([self.selected_file, split_b]) | |
if self.selected_file.empty: | |
logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead") | |
self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))] | |
self.selected_file = self.selected_file.iloc[0:8] | |
self.data_dir = args.data_path | |
if loader_type == "test": | |
self.args.multi_length_training = [1.0] | |
self.max_length = int(args.pose_length * self.args.multi_length_training[-1]) | |
self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr) | |
if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr: | |
self.max_audio_pre_len = self.args.test_length*self.args.audio_sr | |
if args.word_rep is not None: | |
with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f: | |
self.lang_model = pickle.load(f) | |
preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache" | |
# if args.pose_norm: | |
# # careful for rotation vectors | |
# if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"): | |
# self.calculate_mean_pose() | |
# self.mean_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy") | |
# self.std_pose = np.load(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_std.npy") | |
# if args.audio_norm: | |
# if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/bvh_mean.npy"): | |
# self.calculate_mean_audio() | |
# self.mean_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_mean.npy") | |
# self.std_audio = np.load(args.data_path+args.mean_pose_path+f"{args.audio_rep.split('_')[0]}/npy_std.npy") | |
# if args.facial_norm: | |
# if not os.path.exists(args.data_path+args.mean_pose_path+f"{args.pose_rep.split('_')[0]}/bvh_mean.npy"): | |
# self.calculate_mean_face() | |
# self.mean_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_mean.npy") | |
# self.std_facial = np.load(args.data_path+args.mean_pose_path+f"{args.facial_rep}/json_std.npy") | |
if self.args.beat_align: | |
if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"): | |
self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy") | |
self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy") | |
if build_cache and self.rank == 0: | |
self.build_cache(preloaded_dir) | |
self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False) | |
with self.lmdb_env.begin() as txn: | |
self.n_samples = txn.stat()["entries"] | |
def calculate_mean_velocity(self, save_path): | |
self.smplx = smplx.create( | |
self.args.data_path_1+"smplx_models/", | |
model_type='smplx', | |
gender='NEUTRAL_2020', | |
use_face_contour=False, | |
num_betas=300, | |
num_expression_coeffs=100, | |
ext='npz', | |
use_pca=False, | |
).cuda().eval() | |
dir_p = self.data_dir + self.args.pose_rep + "/" | |
all_list = [] | |
from tqdm import tqdm | |
for tar in tqdm(os.listdir(dir_p)): | |
if tar.endswith(".npz"): | |
m_data = np.load(dir_p+tar, allow_pickle=True) | |
betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"] | |
n, c = poses.shape[0], poses.shape[1] | |
betas = betas.reshape(1, 300) | |
betas = np.tile(betas, (n, 1)) | |
betas = torch.from_numpy(betas).cuda().float() | |
poses = torch.from_numpy(poses.reshape(n, c)).cuda().float() | |
exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float() | |
trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float() | |
max_length = 128 | |
s, r = n//max_length, n%max_length | |
#print(n, s, r) | |
all_tensor = [] | |
for i in range(s): | |
with torch.no_grad(): | |
joints = self.smplx( | |
betas=betas[i*max_length:(i+1)*max_length], | |
transl=trans[i*max_length:(i+1)*max_length], | |
expression=exps[i*max_length:(i+1)*max_length], | |
jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69], | |
global_orient=poses[i*max_length:(i+1)*max_length,:3], | |
body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3], | |
left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3], | |
right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3], | |
return_verts=True, | |
return_joints=True, | |
leye_pose=poses[i*max_length:(i+1)*max_length, 69:72], | |
reye_pose=poses[i*max_length:(i+1)*max_length, 72:75], | |
)['joints'][:, :55, :].reshape(max_length, 55*3) | |
all_tensor.append(joints) | |
if r != 0: | |
with torch.no_grad(): | |
joints = self.smplx( | |
betas=betas[s*max_length:s*max_length+r], | |
transl=trans[s*max_length:s*max_length+r], | |
expression=exps[s*max_length:s*max_length+r], | |
jaw_pose=poses[s*max_length:s*max_length+r, 66:69], | |
global_orient=poses[s*max_length:s*max_length+r,:3], | |
body_pose=poses[s*max_length:s*max_length+r,3:21*3+3], | |
left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3], | |
right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3], | |
return_verts=True, | |
return_joints=True, | |
leye_pose=poses[s*max_length:s*max_length+r, 69:72], | |
reye_pose=poses[s*max_length:s*max_length+r, 72:75], | |
)['joints'][:, :55, :].reshape(r, 55*3) | |
all_tensor.append(joints) | |
joints = torch.cat(all_tensor, axis=0) | |
joints = joints.permute(1, 0) | |
dt = 1/30 | |
# first steps is forward diff (t+1 - t) / dt | |
init_vel = (joints[:, 1:2] - joints[:, :1]) / dt | |
# middle steps are second order (t+1 - t-1) / 2dt | |
middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt) | |
# last step is backward diff (t - t-1) / dt | |
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt | |
#print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape) | |
vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3) | |
#print(vel_seq.shape) | |
#.permute(1, 0).reshape(n, 55, 3) | |
vel_seq_np = vel_seq.cpu().numpy() | |
vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55 | |
all_list.append(vel_joints_np) | |
avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55 | |
np.save(save_path, avg_vel) | |
def build_cache(self, preloaded_dir): | |
logger.info(f"Audio bit rate: {self.args.audio_fps}") | |
logger.info("Reading data '{}'...".format(self.data_dir)) | |
logger.info("Creating the dataset cache...") | |
if self.args.new_cache: | |
if os.path.exists(preloaded_dir): | |
shutil.rmtree(preloaded_dir) | |
if os.path.exists(preloaded_dir): | |
logger.info("Found the cache {}".format(preloaded_dir)) | |
elif self.loader_type == "test": | |
self.cache_generation( | |
preloaded_dir, True, | |
0, 0, | |
is_test=True) | |
else: | |
self.cache_generation( | |
preloaded_dir, self.args.disable_filtering, | |
self.args.clean_first_seconds, self.args.clean_final_seconds, | |
is_test=False) | |
def __len__(self): | |
return self.n_samples | |
def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds, clean_final_seconds, is_test=False): | |
# if "wav2vec2" in self.args.audio_rep: | |
# self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h") | |
# self.wav2vec_model.feature_extractor._freeze_parameters() | |
# self.wav2vec_model = self.wav2vec_model.cuda() | |
# self.wav2vec_model.eval() | |
self.n_out_samples = 0 | |
# create db for samples | |
if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir) | |
dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G | |
n_filtered_out = defaultdict(int) | |
for index, file_name in self.selected_file.iterrows(): | |
f_name = file_name["id"] | |
ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh" | |
pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext | |
pose_each_file = [] | |
trans_each_file = [] | |
shape_each_file = [] | |
audio_each_file = [] | |
facial_each_file = [] | |
word_each_file = [] | |
emo_each_file = [] | |
sem_each_file = [] | |
vid_each_file = [] | |
id_pose = f_name #1_wayne_0_1_1 | |
logger.info(colored(f"# ---- Building cache for Pose {id_pose} ---- #", "blue")) | |
if "smplx" in self.args.pose_rep: | |
pose_data = np.load(pose_file, allow_pickle=True) | |
assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30' | |
stride = int(30/self.args.pose_fps) | |
pose_each_file = pose_data["poses"][::stride] * self.joint_mask | |
pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)] | |
# print(pose_each_file.shape) | |
trans_each_file = pose_data["trans"][::stride] | |
shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0) | |
if self.args.facial_rep is not None: | |
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #") | |
facial_each_file = pose_data["expressions"][::stride] | |
if self.args.facial_norm: | |
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial | |
else: | |
assert 120%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120' | |
stride = int(120/self.args.pose_fps) | |
with open(pose_file, "r") as pose_data: | |
for j, line in enumerate(pose_data.readlines()): | |
if j < 431: continue | |
if j%stride != 0:continue | |
data = np.fromstring(line, dtype=float, sep=" ") | |
rot_data = rc.euler_angles_to_matrix(torch.from_numpy(np.deg2rad(data)).reshape(-1, self.joints,3), "XYZ") | |
rot_data = rc.matrix_to_axis_angle(rot_data).reshape(-1, self.joints*3) | |
rot_data = rot_data.numpy() * self.joint_mask | |
pose_each_file.append(rot_data) | |
trans_each_file.append(data[:3]) | |
pose_each_file = np.array(pose_each_file) | |
# print(pose_each_file.shape) | |
trans_each_file = np.array(trans_each_file) | |
shape_each_file = np.repeat(np.array(-1).reshape(1, 1), pose_each_file.shape[0], axis=0) | |
if self.args.facial_rep is not None: | |
logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #") | |
facial_file = pose_file.replace(self.args.pose_rep, self.args.facial_rep).replace("bvh", "json") | |
assert 60%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 120' | |
stride = int(60/self.args.pose_fps) | |
if not os.path.exists(facial_file): | |
logger.warning(f"# ---- file not found for Facial {id_pose}, skip all files with the same id ---- #") | |
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index) | |
continue | |
with open(facial_file, 'r') as facial_data_file: | |
facial_data = json.load(facial_data_file) | |
for j, frame_data in enumerate(facial_data['frames']): | |
if j%stride != 0:continue | |
facial_each_file.append(frame_data['weights']) | |
facial_each_file = np.array(facial_each_file) | |
if self.args.facial_norm: | |
facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial | |
if self.args.id_rep is not None: | |
vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0) | |
if self.args.audio_rep is not None: | |
logger.info(f"# ---- Building cache for Audio {id_pose} and Pose {id_pose} ---- #") | |
audio_file = pose_file.replace(self.args.pose_rep, 'wave16k').replace(ext, ".wav") | |
if not os.path.exists(audio_file): | |
logger.warning(f"# ---- file not found for Audio {id_pose}, skip all files with the same id ---- #") | |
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index) | |
continue | |
audio_each_file, sr = librosa.load(audio_file) | |
audio_each_file = librosa.resample(audio_each_file, orig_sr=sr, target_sr=self.args.audio_sr) | |
if self.args.audio_rep == "onset+amplitude": | |
from numpy.lib import stride_tricks | |
frame_length = 1024 | |
# hop_length = 512 | |
shape = (audio_each_file.shape[-1] - frame_length + 1, frame_length) | |
strides = (audio_each_file.strides[-1], audio_each_file.strides[-1]) | |
rolling_view = stride_tricks.as_strided(audio_each_file, shape=shape, strides=strides) | |
amplitude_envelope = np.max(np.abs(rolling_view), axis=1) | |
# pad the last frame_length-1 samples | |
amplitude_envelope = np.pad(amplitude_envelope, (0, frame_length-1), mode='constant', constant_values=amplitude_envelope[-1]) | |
audio_onset_f = librosa.onset.onset_detect(y=audio_each_file, sr=self.args.audio_sr, units='frames') | |
onset_array = np.zeros(len(audio_each_file), dtype=float) | |
onset_array[audio_onset_f] = 1.0 | |
# print(amplitude_envelope.shape, audio_each_file.shape, onset_array.shape) | |
audio_each_file = np.concatenate([amplitude_envelope.reshape(-1, 1), onset_array.reshape(-1, 1)], axis=1) | |
elif self.args.audio_rep == "mfcc": | |
audio_each_file = librosa.feature.melspectrogram(y=audio_each_file, sr=self.args.audio_sr, n_mels=128, hop_length=int(self.args.audio_sr/self.args.audio_fps)) | |
audio_each_file = audio_each_file.transpose(1, 0) | |
# print(audio_each_file.shape, pose_each_file.shape) | |
if self.args.audio_norm and self.args.audio_rep == "wave16k": | |
audio_each_file = (audio_each_file - self.mean_audio) / self.std_audio | |
# print(audio_each_file.shape) | |
time_offset = 0 | |
if self.args.word_rep is not None: | |
logger.info(f"# ---- Building cache for Word {id_pose} and Pose {id_pose} ---- #") | |
word_file = f"{self.data_dir}{self.args.word_rep}/{id_pose}.TextGrid" | |
if not os.path.exists(word_file): | |
logger.warning(f"# ---- file not found for Word {id_pose}, skip all files with the same id ---- #") | |
self.selected_file = self.selected_file.drop(self.selected_file[self.selected_file['id'] == id_pose].index) | |
continue | |
tgrid = tg.TextGrid.fromFile(word_file) | |
if self.args.t_pre_encoder == "bert": | |
from transformers import AutoTokenizer, BertModel | |
tokenizer = AutoTokenizer.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True) | |
model = BertModel.from_pretrained(self.args.data_path_1 + "hub/bert-base-uncased", local_files_only=True).eval() | |
list_word = [] | |
all_hidden = [] | |
max_len = 400 | |
last = 0 | |
word_token_mapping = [] | |
first = True | |
for i, word in enumerate(tgrid[0]): | |
last = i | |
if (i%max_len != 0) or (i==0): | |
if word.mark == "": | |
list_word.append(".") | |
else: | |
list_word.append(word.mark) | |
else: | |
max_counter = max_len | |
str_word = ' '.join(map(str, list_word)) | |
if first: | |
global_len = 0 | |
end = -1 | |
offset_word = [] | |
for k, wordvalue in enumerate(list_word): | |
start = end+1 | |
end = start+len(wordvalue) | |
offset_word.append((start, end)) | |
#print(offset_word) | |
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping'] | |
#print(token_scan) | |
for start, end in offset_word: | |
sub_mapping = [] | |
for i, (start_t, end_t) in enumerate(token_scan[1:-1]): | |
if int(start) <= int(start_t) and int(end_t) <= int(end): | |
#print(i+global_len) | |
sub_mapping.append(i+global_len) | |
word_token_mapping.append(sub_mapping) | |
#print(len(word_token_mapping)) | |
global_len = word_token_mapping[-1][-1] + 1 | |
list_word = [] | |
if word.mark == "": | |
list_word.append(".") | |
else: | |
list_word.append(word.mark) | |
with torch.no_grad(): | |
inputs = tokenizer(str_word, return_tensors="pt") | |
outputs = model(**inputs) | |
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :] | |
all_hidden.append(last_hidden_states) | |
#list_word = list_word[:10] | |
if list_word == []: | |
pass | |
else: | |
if first: | |
global_len = 0 | |
str_word = ' '.join(map(str, list_word)) | |
end = -1 | |
offset_word = [] | |
for k, wordvalue in enumerate(list_word): | |
start = end+1 | |
end = start+len(wordvalue) | |
offset_word.append((start, end)) | |
#print(offset_word) | |
token_scan = tokenizer.encode_plus(str_word, return_offsets_mapping=True)['offset_mapping'] | |
#print(token_scan) | |
for start, end in offset_word: | |
sub_mapping = [] | |
for i, (start_t, end_t) in enumerate(token_scan[1:-1]): | |
if int(start) <= int(start_t) and int(end_t) <= int(end): | |
sub_mapping.append(i+global_len) | |
#print(sub_mapping) | |
word_token_mapping.append(sub_mapping) | |
#print(len(word_token_mapping)) | |
with torch.no_grad(): | |
inputs = tokenizer(str_word, return_tensors="pt") | |
outputs = model(**inputs) | |
last_hidden_states = outputs.last_hidden_state.reshape(-1, 768).cpu().numpy()[1:-1, :] | |
all_hidden.append(last_hidden_states) | |
last_hidden_states = np.concatenate(all_hidden, axis=0) | |
for i in range(pose_each_file.shape[0]): | |
found_flag = False | |
current_time = i/self.args.pose_fps + time_offset | |
j_last = 0 | |
for j, word in enumerate(tgrid[0]): | |
word_n, word_s, word_e = word.mark, word.minTime, word.maxTime | |
if word_s<=current_time and current_time<=word_e: | |
if self.args.word_cache and self.args.t_pre_encoder == 'bert': | |
mapping_index = word_token_mapping[j] | |
#print(mapping_index, word_s, word_e) | |
s_t = np.linspace(word_s, word_e, len(mapping_index)+1) | |
#print(s_t) | |
for tt, t_sep in enumerate(s_t[1:]): | |
if current_time <= t_sep: | |
#if len(mapping_index) > 1: print(mapping_index[tt]) | |
word_each_file.append(last_hidden_states[mapping_index[tt]]) | |
break | |
else: | |
if word_n == " ": | |
word_each_file.append(self.lang_model.PAD_token) | |
else: | |
word_each_file.append(self.lang_model.get_word_index(word_n)) | |
found_flag = True | |
j_last = j | |
break | |
else: continue | |
if not found_flag: | |
if self.args.word_cache and self.args.t_pre_encoder == 'bert': | |
word_each_file.append(last_hidden_states[j_last]) | |
else: | |
word_each_file.append(self.lang_model.UNK_token) | |
word_each_file = np.array(word_each_file) | |
#print(word_each_file.shape) | |
if self.args.emo_rep is not None: | |
logger.info(f"# ---- Building cache for Emo {id_pose} and Pose {id_pose} ---- #") | |
rtype, start = int(id_pose.split('_')[3]), int(id_pose.split('_')[3]) | |
if rtype == 0 or rtype == 2 or rtype == 4 or rtype == 6: | |
if start >= 1 and start <= 64: | |
score = 0 | |
elif start >= 65 and start <= 72: | |
score = 1 | |
elif start >= 73 and start <= 80: | |
score = 2 | |
elif start >= 81 and start <= 86: | |
score = 3 | |
elif start >= 87 and start <= 94: | |
score = 4 | |
elif start >= 95 and start <= 102: | |
score = 5 | |
elif start >= 103 and start <= 110: | |
score = 6 | |
elif start >= 111 and start <= 118: | |
score = 7 | |
else: pass | |
else: | |
# you may denote as unknown in the future | |
score = 0 | |
emo_each_file = np.repeat(np.array(score).reshape(1, 1), pose_each_file.shape[0], axis=0) | |
#print(emo_each_file) | |
if self.args.sem_rep is not None: | |
logger.info(f"# ---- Building cache for Sem {id_pose} and Pose {id_pose} ---- #") | |
sem_file = f"{self.data_dir}{self.args.sem_rep}/{id_pose}.txt" | |
sem_all = pd.read_csv(sem_file, | |
sep='\t', | |
names=["name", "start_time", "end_time", "duration", "score", "keywords"]) | |
# we adopt motion-level semantic score here. | |
for i in range(pose_each_file.shape[0]): | |
found_flag = False | |
for j, (start, end, score) in enumerate(zip(sem_all['start_time'],sem_all['end_time'], sem_all['score'])): | |
current_time = i/self.args.pose_fps + time_offset | |
if start<=current_time and current_time<=end: | |
sem_each_file.append(score) | |
found_flag=True | |
break | |
else: continue | |
if not found_flag: sem_each_file.append(0.) | |
sem_each_file = np.array(sem_each_file) | |
#print(sem_each_file) | |
filtered_result = self._sample_from_clip( | |
dst_lmdb_env, | |
audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file, | |
vid_each_file, emo_each_file, sem_each_file, | |
disable_filtering, clean_first_seconds, clean_final_seconds, is_test, | |
) | |
for type in filtered_result.keys(): | |
n_filtered_out[type] += filtered_result[type] | |
with dst_lmdb_env.begin() as txn: | |
logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan")) | |
n_total_filtered = 0 | |
for type, n_filtered in n_filtered_out.items(): | |
logger.info("{}: {}".format(type, n_filtered)) | |
n_total_filtered += n_filtered | |
logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format( | |
n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan")) | |
dst_lmdb_env.sync() | |
dst_lmdb_env.close() | |
def _sample_from_clip( | |
self, dst_lmdb_env, audio_each_file, pose_each_file, trans_each_file, shape_each_file, facial_each_file, word_each_file, | |
vid_each_file, emo_each_file, sem_each_file, | |
disable_filtering, clean_first_seconds, clean_final_seconds, is_test, | |
): | |
""" | |
for data cleaning, we ignore the data for first and final n s | |
for test, we return all data | |
""" | |
# audio_start = int(self.alignment[0] * self.args.audio_fps) | |
# pose_start = int(self.alignment[1] * self.args.pose_fps) | |
#logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}") | |
# audio_each_file = audio_each_file[audio_start:] | |
# pose_each_file = pose_each_file[pose_start:] | |
# trans_each_file = | |
#logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}") | |
#print(pose_each_file.shape) | |
round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps # assume 1500 frames / 15 fps = 100 s | |
#print(round_seconds_skeleton) | |
if audio_each_file != []: | |
if self.args.audio_rep != "wave16k": | |
round_seconds_audio = len(audio_each_file) // self.args.audio_fps # assume 16,000,00 / 16,000 = 100 s | |
elif self.args.audio_rep == "mfcc": | |
round_seconds_audio = audio_each_file.shape[0] // self.args.audio_fps | |
else: | |
round_seconds_audio = audio_each_file.shape[0] // self.args.audio_sr | |
if facial_each_file != []: | |
round_seconds_facial = facial_each_file.shape[0] // self.args.pose_fps | |
logger.info(f"audio: {round_seconds_audio}s, pose: {round_seconds_skeleton}s, facial: {round_seconds_facial}s") | |
round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton, round_seconds_facial) | |
max_round = max(round_seconds_audio, round_seconds_skeleton, round_seconds_facial) | |
if round_seconds_skeleton != max_round: | |
logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s") | |
else: | |
logger.info(f"pose: {round_seconds_skeleton}s, audio: {round_seconds_audio}s") | |
round_seconds_skeleton = min(round_seconds_audio, round_seconds_skeleton) | |
max_round = max(round_seconds_audio, round_seconds_skeleton) | |
if round_seconds_skeleton != max_round: | |
logger.warning(f"reduce to {round_seconds_skeleton}s, ignore {max_round-round_seconds_skeleton}s") | |
clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s | |
clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000] | |
clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15] | |
for ratio in self.args.multi_length_training: | |
if is_test:# stride = length for test | |
cut_length = clip_e_f_pose - clip_s_f_pose | |
self.args.stride = cut_length | |
self.max_length = cut_length | |
else: | |
self.args.stride = int(ratio*self.ori_stride) | |
cut_length = int(self.ori_length*ratio) | |
num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1 | |
logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}") | |
logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}") | |
if audio_each_file != []: | |
audio_short_length = math.floor(cut_length / self.args.pose_fps * self.args.audio_fps) | |
""" | |
for audio sr = 16000, fps = 15, pose_length = 34, | |
audio short length = 36266.7 -> 36266 | |
this error is fine. | |
""" | |
logger.info(f"audio from frame {clip_s_f_audio} to {clip_e_f_audio}, length {audio_short_length}") | |
n_filtered_out = defaultdict(int) | |
sample_pose_list = [] | |
sample_audio_list = [] | |
sample_facial_list = [] | |
sample_shape_list = [] | |
sample_word_list = [] | |
sample_emo_list = [] | |
sample_sem_list = [] | |
sample_vid_list = [] | |
sample_trans_list = [] | |
for i in range(num_subdivision): # cut into around 2s chip, (self npose) | |
start_idx = clip_s_f_pose + i * self.args.stride | |
fin_idx = start_idx + cut_length | |
sample_pose = pose_each_file[start_idx:fin_idx] | |
sample_trans = trans_each_file[start_idx:fin_idx] | |
sample_shape = shape_each_file[start_idx:fin_idx] | |
# print(sample_pose.shape) | |
if self.args.audio_rep is not None: | |
audio_start = clip_s_f_audio + math.floor(i * self.args.stride * self.args.audio_fps / self.args.pose_fps) | |
audio_end = audio_start + audio_short_length | |
sample_audio = audio_each_file[audio_start:audio_end] | |
else: | |
sample_audio = np.array([-1]) | |
sample_facial = facial_each_file[start_idx:fin_idx] if self.args.facial_rep is not None else np.array([-1]) | |
sample_word = word_each_file[start_idx:fin_idx] if self.args.word_rep is not None else np.array([-1]) | |
sample_emo = emo_each_file[start_idx:fin_idx] if self.args.emo_rep is not None else np.array([-1]) | |
sample_sem = sem_each_file[start_idx:fin_idx] if self.args.sem_rep is not None else np.array([-1]) | |
sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1]) | |
if sample_pose.any() != None: | |
# filtering motion skeleton data | |
sample_pose, filtering_message = MotionPreprocessor(sample_pose).get() | |
is_correct_motion = (sample_pose != []) | |
if is_correct_motion or disable_filtering: | |
sample_pose_list.append(sample_pose) | |
sample_audio_list.append(sample_audio) | |
sample_facial_list.append(sample_facial) | |
sample_shape_list.append(sample_shape) | |
sample_word_list.append(sample_word) | |
sample_vid_list.append(sample_vid) | |
sample_emo_list.append(sample_emo) | |
sample_sem_list.append(sample_sem) | |
sample_trans_list.append(sample_trans) | |
else: | |
n_filtered_out[filtering_message] += 1 | |
if len(sample_pose_list) > 0: | |
with dst_lmdb_env.begin(write=True) as txn: | |
for pose, audio, facial, shape, word, vid, emo, sem, trans in zip( | |
sample_pose_list, | |
sample_audio_list, | |
sample_facial_list, | |
sample_shape_list, | |
sample_word_list, | |
sample_vid_list, | |
sample_emo_list, | |
sample_sem_list, | |
sample_trans_list,): | |
k = "{:005}".format(self.n_out_samples).encode("ascii") | |
v = [pose, audio, facial, shape, word, emo, sem, vid, trans] | |
v = pyarrow.serialize(v).to_buffer() | |
txn.put(k, v) | |
self.n_out_samples += 1 | |
return n_filtered_out | |
def __getitem__(self, idx): | |
with self.lmdb_env.begin(write=False) as txn: | |
key = "{:005}".format(idx).encode("ascii") | |
sample = txn.get(key) | |
sample = pyarrow.deserialize(sample) | |
tar_pose, in_audio, in_facial, in_shape, in_word, emo, sem, vid, trans = sample | |
#print(in_shape) | |
#vid = torch.from_numpy(vid).int() | |
emo = torch.from_numpy(emo).int() | |
sem = torch.from_numpy(sem).float() | |
in_audio = torch.from_numpy(in_audio).float() | |
in_word = torch.from_numpy(in_word).float() if self.args.word_cache else torch.from_numpy(in_word).int() | |
if self.loader_type == "test": | |
tar_pose = torch.from_numpy(tar_pose).float() | |
trans = torch.from_numpy(trans).float() | |
in_facial = torch.from_numpy(in_facial).float() | |
vid = torch.from_numpy(vid).float() | |
in_shape = torch.from_numpy(in_shape).float() | |
else: | |
in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float() | |
trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float() | |
vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float() | |
tar_pose = torch.from_numpy(tar_pose).reshape((tar_pose.shape[0], -1)).float() | |
in_facial = torch.from_numpy(in_facial).reshape((in_facial.shape[0], -1)).float() | |
return {"pose":tar_pose, "audio":in_audio, "facial":in_facial, "beta": in_shape, "word":in_word, "id":vid, "emo":emo, "sem":sem, "trans":trans} | |
class MotionPreprocessor: | |
def __init__(self, skeletons): | |
self.skeletons = skeletons | |
#self.mean_pose = mean_pose | |
self.filtering_message = "PASS" | |
def get(self): | |
assert (self.skeletons is not None) | |
# filtering | |
if self.skeletons != []: | |
if self.check_pose_diff(): | |
self.skeletons = [] | |
self.filtering_message = "pose" | |
# elif self.check_spine_angle(): | |
# self.skeletons = [] | |
# self.filtering_message = "spine angle" | |
# elif self.check_static_motion(): | |
# self.skeletons = [] | |
# self.filtering_message = "motion" | |
# if self.skeletons != []: | |
# self.skeletons = self.skeletons.tolist() | |
# for i, frame in enumerate(self.skeletons): | |
# assert not np.isnan(self.skeletons[i]).any() # missing joints | |
return self.skeletons, self.filtering_message | |
def check_static_motion(self, verbose=True): | |
def get_variance(skeleton, joint_idx): | |
wrist_pos = skeleton[:, joint_idx] | |
variance = np.sum(np.var(wrist_pos, axis=0)) | |
return variance | |
left_arm_var = get_variance(self.skeletons, 6) | |
right_arm_var = get_variance(self.skeletons, 9) | |
th = 0.0014 # exclude 13110 | |
# th = 0.002 # exclude 16905 | |
if left_arm_var < th and right_arm_var < th: | |
if verbose: | |
print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var)) | |
return True | |
else: | |
if verbose: | |
print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var)) | |
return False | |
def check_pose_diff(self, verbose=False): | |
# diff = np.abs(self.skeletons - self.mean_pose) # 186*1 | |
# diff = np.mean(diff) | |
# # th = 0.017 | |
# th = 0.02 #0.02 # exclude 3594 | |
# if diff < th: | |
# if verbose: | |
# print("skip - check_pose_diff {:.5f}".format(diff)) | |
# return True | |
# # th = 3.5 #0.02 # exclude 3594 | |
# # if 3.5 < diff < 5: | |
# # if verbose: | |
# # print("skip - check_pose_diff {:.5f}".format(diff)) | |
# # return True | |
# else: | |
# if verbose: | |
# print("pass - check_pose_diff {:.5f}".format(diff)) | |
return False | |
def check_spine_angle(self, verbose=True): | |
def angle_between(v1, v2): | |
v1_u = v1 / np.linalg.norm(v1) | |
v2_u = v2 / np.linalg.norm(v2) | |
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) | |
angles = [] | |
for i in range(self.skeletons.shape[0]): | |
spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0] | |
angle = angle_between(spine_vec, [0, -1, 0]) | |
angles.append(angle) | |
if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20: # exclude 4495 | |
# if np.rad2deg(max(angles)) > 20: # exclude 8270 | |
if verbose: | |
print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles))) | |
return True | |
else: | |
if verbose: | |
print("pass - check_spine_angle {:.5f}".format(max(angles))) | |
return False |