Spaces:
Sleeping
Sleeping
title: ERA SESSION27 - Phi2 Model Finetuning with QLoRA on OpenAssistant Conversations Dataset (OASST1) | |
emoji: 💻 | |
colorFrom: yellow | |
colorTo: blue | |
sdk: gradio | |
sdk_version: 4.14.0 | |
app_file: app.py | |
pinned: false | |
license: mit | |
[**Repository Link**](https://github.com/RaviNaik/ERA-SESSION27) | |
This is an implementation of [Phi2](https://huggingface.co/microsoft/phi-2) model finetuning using QLoRA stratergy on [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) | |
Dataset used to finetune: [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) | |
ChatML modified OSST Dataset: [RaviNaik/oasst1-chatml](https://huggingface.co/datasets/RaviNaik/oasst1-chatml) | |
Finetuned Model: [RaviNaik/Phi2-Osst](https://huggingface.co/RaviNaik/Phi2-Osst) | |
### Tasks: | |
1. :heavy_check_mark: Use OpenAssistant dataset. | |
2. :heavy_check_mark: Finetune Microsoft Phi2 model. | |
3. :heavy_check_mark: Use QLoRA stratergy. | |
4. :heavy_check_mark: Create an App on HF space using finetuned model. | |
## Phi2 Model Description: | |
```python | |
PhiForCausalLM( | |
(transformer): PhiModel( | |
(embd): Embedding( | |
(wte): Embedding(51200, 2560) | |
(drop): Dropout(p=0.0, inplace=False) | |
) | |
(h): ModuleList( | |
(0-31): 32 x ParallelBlock( | |
(ln): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) | |
(resid_dropout): Dropout(p=0.1, inplace=False) | |
(mixer): MHA( | |
(rotary_emb): RotaryEmbedding() | |
(Wqkv): Linear4bit(in_features=2560, out_features=7680, bias=True) | |
(out_proj): Linear4bit(in_features=2560, out_features=2560, bias=True) | |
(inner_attn): SelfAttention( | |
(drop): Dropout(p=0.0, inplace=False) | |
) | |
(inner_cross_attn): CrossAttention( | |
(drop): Dropout(p=0.0, inplace=False) | |
) | |
) | |
(mlp): MLP( | |
(fc1): Linear4bit(in_features=2560, out_features=10240, bias=True) | |
(fc2): Linear4bit(in_features=10240, out_features=2560, bias=True) | |
(act): NewGELUActivation() | |
) | |
) | |
) | |
) | |
(lm_head): CausalLMHead( | |
(ln): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) | |
(linear): Linear(in_features=2560, out_features=51200, bias=True) | |
) | |
(loss): CausalLMLoss( | |
(loss_fct): CrossEntropyLoss() | |
) | |
) | |
``` | |
## Training Loss Curve: | |
![image](https://github.com/RaviNaik/ERA-SESSION27/assets/23289802/b477dd79-acab-48d2-aca7-39baa80dfb5b) | |
### Training Output | |
```python | |
TrainOutput(global_step=500, training_loss=1.4746462078094482, metrics={'train_runtime': 4307.6684, 'train_samples_per_second': 3.714, 'train_steps_per_second': 0.116, 'total_flos': 6.667526640623616e+16, 'train_loss': 1.4746462078094482, 'epoch': 1.62}) | |
``` | |
### Loss vs Steps Logs | |
![image](https://github.com/RaviNaik/ERA-SESSION27/assets/23289802/f305c4e7-c64d-4501-9b60-ae8f9a266349) | |
## Sample Results: | |
![image](https://github.com/RaviNaik/ERA-SESSION27/assets/23289802/e76a1f9c-24a4-40ac-b62a-291eacf1e3de) | |
![image](https://github.com/RaviNaik/ERA-SESSION27/assets/23289802/72278fa6-6e2e-49ea-8f97-78e3eddff8ae) | |
## Gradio UI: | |
![image](https://github.com/RaviNaik/ERA-SESSION27/assets/23289802/4fe7e106-7616-408b-8132-644567f8d0bb) | |