Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import DistilBertTokenizer, DistilBertForSequenceClassification | |
| # Load the model and tokenizer | |
| model_name = "AventIQ-AI/distilbert-base-uncased-sentiment-analysis" | |
| tokenizer = DistilBertTokenizer.from_pretrained(model_name) | |
| model = DistilBertForSequenceClassification.from_pretrained(model_name) | |
| def predict_sentiment(text): | |
| inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| predicted_class_id = torch.argmax(logits, dim=-1).item() | |
| sentiment = "Positive" if predicted_class_id == 1 else "Negative" | |
| return sentiment | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=predict_sentiment, | |
| inputs=gr.Textbox(lines=3, placeholder="Enter text for sentiment analysis..."), | |
| outputs=gr.Textbox(label="Sentiment"), | |
| title="DistilBERT Sentiment Analysis", | |
| description="Enter a sentence to classify its sentiment as Positive or Negative using a fine-tuned DistilBERT model.", | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |