Spaces:
Runtime error
Runtime error
init commit.
Browse files- .gitignore +131 -0
- LICENSE +21 -0
- README.md +2 -1
- app.py +195 -0
- beat_interpolator.py +121 -0
- examples/__init__.py +0 -0
- examples/example.mp3 +3 -0
- examples/models/__init__.py +0 -0
- examples/models/anime_biggan/__init__.py +1 -0
- examples/models/anime_biggan/model.py +437 -0
- examples/models/celeba256/__init__.py +1 -0
- examples/models/celeba256/model.py +37 -0
- examples/models/fashion/__init__.py +1 -0
- examples/models/fashion/model.py +31 -0
- examples/models/mnist/__init__.py +1 -0
- examples/models/mnist/mnist_generator.pretrained +3 -0
- examples/models/mnist/model.py +69 -0
- packages.txt +3 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
130 |
+
|
131 |
+
*.db
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 艾梦
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -10,4 +10,5 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
# beat-interpolator
|
14 |
+
Interpolate the latents of your DL model to follow the beat of the music
|
app.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import os
|
7 |
+
import glob
|
8 |
+
import pickle
|
9 |
+
import sys
|
10 |
+
import importlib
|
11 |
+
from typing import List, Tuple
|
12 |
+
|
13 |
+
import gradio as gr
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
|
18 |
+
from beat_interpolator import beat_interpolator
|
19 |
+
|
20 |
+
|
21 |
+
def build_models():
|
22 |
+
modules = glob.glob('examples/models/*')
|
23 |
+
modules = [
|
24 |
+
getattr(
|
25 |
+
importlib.import_module(
|
26 |
+
module.replace('/', '.'),
|
27 |
+
package=None
|
28 |
+
),
|
29 |
+
'create'
|
30 |
+
)()
|
31 |
+
for module in modules
|
32 |
+
if '.py' not in module and '__' not in module
|
33 |
+
]
|
34 |
+
|
35 |
+
attrs = [ (module['name'], module) for module in modules ]
|
36 |
+
mnist_idx = -1
|
37 |
+
for i in range(len(attrs)):
|
38 |
+
name, _ = attrs[i]
|
39 |
+
if name == 'MNIST':
|
40 |
+
mnist_idx = i
|
41 |
+
if mnist_idx > -1:
|
42 |
+
mnist_attr = attrs.pop(mnist_idx)
|
43 |
+
attrs.insert(0, mnist_attr)
|
44 |
+
|
45 |
+
return attrs
|
46 |
+
|
47 |
+
|
48 |
+
def parse_args() -> argparse.Namespace:
|
49 |
+
parser = argparse.ArgumentParser()
|
50 |
+
parser.add_argument('--device', type=str, default='cpu')
|
51 |
+
parser.add_argument('--theme', type=str)
|
52 |
+
parser.add_argument('--share', action='store_true')
|
53 |
+
parser.add_argument('--port', type=int)
|
54 |
+
parser.add_argument('--disable-queue',
|
55 |
+
dest='enable_queue',
|
56 |
+
action='store_false')
|
57 |
+
return parser.parse_args()
|
58 |
+
|
59 |
+
|
60 |
+
def main():
|
61 |
+
args = parse_args()
|
62 |
+
enable_queue = args.enable_queue
|
63 |
+
model_attrs = build_models()
|
64 |
+
|
65 |
+
with gr.Blocks(theme=args.theme) as demo:
|
66 |
+
gr.Markdown('''<center><h1>Beat-Interpolator</h1></center>
|
67 |
+
<h2>Play DL models with music beats.</h2><br />
|
68 |
+
This is a Gradio Blocks app of <a href="https://github.com/HighCWu/beat-interpolator">HighCWu/beat-interpolator</a>.
|
69 |
+
''')
|
70 |
+
with gr.Tabs():
|
71 |
+
for name, model_attr in model_attrs:
|
72 |
+
with gr.TabItem(name):
|
73 |
+
generator = model_attr['generator']
|
74 |
+
latent_dim = model_attr['latent_dim']
|
75 |
+
default_fps = model_attr['fps']
|
76 |
+
max_fps = model_attr['fps'] if enable_queue else 60
|
77 |
+
batch_size = model_attr['batch_size']
|
78 |
+
strength = model_attr['strength']
|
79 |
+
default_max_duration = model_attr['max_duration']
|
80 |
+
max_duration = model_attr['max_duration'] if enable_queue else 360
|
81 |
+
use_peak = model_attr['use_peak']
|
82 |
+
|
83 |
+
def build_interpolate(
|
84 |
+
generator,
|
85 |
+
latent_dim,
|
86 |
+
batch_size
|
87 |
+
):
|
88 |
+
def interpolate(
|
89 |
+
wave_path,
|
90 |
+
seed,
|
91 |
+
fps=default_fps,
|
92 |
+
strength=strength,
|
93 |
+
max_duration=default_max_duration,
|
94 |
+
use_peak=use_peak):
|
95 |
+
return beat_interpolator(
|
96 |
+
wave_path,
|
97 |
+
generator,
|
98 |
+
latent_dim,
|
99 |
+
int(seed),
|
100 |
+
int(fps),
|
101 |
+
batch_size,
|
102 |
+
strength,
|
103 |
+
max_duration,
|
104 |
+
use_peak)
|
105 |
+
return interpolate
|
106 |
+
|
107 |
+
interpolate = build_interpolate(generator, latent_dim, batch_size)
|
108 |
+
|
109 |
+
with gr.Row():
|
110 |
+
with gr.Box():
|
111 |
+
with gr.Column():
|
112 |
+
with gr.Row():
|
113 |
+
wave_in = gr.Audio(
|
114 |
+
type="filepath",
|
115 |
+
label="Music"
|
116 |
+
)
|
117 |
+
# wave example not supported currently
|
118 |
+
# with gr.Row():
|
119 |
+
# example_audios = gr.Dataset(
|
120 |
+
# components=[wave_in],
|
121 |
+
# samples=[['examples/example.mp3']]
|
122 |
+
# )
|
123 |
+
# example_audios.click(
|
124 |
+
# fn=lambda examples: gr.Audio.update(value=examples[0]),
|
125 |
+
# inputs=example_audios,
|
126 |
+
# outputs=example_audios.components
|
127 |
+
# )
|
128 |
+
with gr.Row():
|
129 |
+
gr.File(
|
130 |
+
value='examples/example.mp3',
|
131 |
+
interactive=False,
|
132 |
+
label='Example'
|
133 |
+
)
|
134 |
+
with gr.Row():
|
135 |
+
seed_in = gr.Number(
|
136 |
+
value=128,
|
137 |
+
label='Seed'
|
138 |
+
)
|
139 |
+
with gr.Row():
|
140 |
+
fps_in = gr.Slider(
|
141 |
+
value=default_fps,
|
142 |
+
minimum=4,
|
143 |
+
maximum=max_fps,
|
144 |
+
label="FPS"
|
145 |
+
)
|
146 |
+
with gr.Row():
|
147 |
+
strength_in = gr.Slider(
|
148 |
+
value=strength,
|
149 |
+
maximum=1,
|
150 |
+
label="Strength"
|
151 |
+
)
|
152 |
+
with gr.Row():
|
153 |
+
max_duration_in = gr.Slider(
|
154 |
+
value=default_max_duration,
|
155 |
+
minimum=5,
|
156 |
+
maximum=max_duration,
|
157 |
+
label="Max Duration"
|
158 |
+
)
|
159 |
+
|
160 |
+
with gr.Row():
|
161 |
+
peak_in = gr.Checkbox(value=use_peak, label="Use peak")
|
162 |
+
|
163 |
+
with gr.Row():
|
164 |
+
generate_button = gr.Button('Generate')
|
165 |
+
|
166 |
+
with gr.Box():
|
167 |
+
with gr.Column():
|
168 |
+
with gr.Row():
|
169 |
+
interpolated_video = gr.Video(label='Output Video')
|
170 |
+
|
171 |
+
|
172 |
+
generate_button.click(interpolate,
|
173 |
+
inputs=[
|
174 |
+
wave_in,
|
175 |
+
seed_in,
|
176 |
+
fps_in,
|
177 |
+
strength_in,
|
178 |
+
max_duration_in,
|
179 |
+
peak_in
|
180 |
+
],
|
181 |
+
outputs=[interpolated_video])
|
182 |
+
|
183 |
+
gr.Markdown(
|
184 |
+
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.beat-interpolator" alt="visitor badge"/></center>'
|
185 |
+
)
|
186 |
+
|
187 |
+
demo.launch(
|
188 |
+
enable_queue=args.enable_queue,
|
189 |
+
server_port=args.port,
|
190 |
+
share=args.share,
|
191 |
+
)
|
192 |
+
|
193 |
+
|
194 |
+
if __name__ == '__main__':
|
195 |
+
main()
|
beat_interpolator.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import soundfile as sf
|
5 |
+
|
6 |
+
from moviepy.editor import *
|
7 |
+
|
8 |
+
|
9 |
+
cache_wav_path = [f'/tmp/{str(i).zfill(2)}.wav' for i in range(50)]
|
10 |
+
wave_path_iter = iter(cache_wav_path)
|
11 |
+
cache_mp4_path = [f'/tmp/{str(i).zfill(2)}.mp4' for i in range(50)]
|
12 |
+
path_iter = iter(cache_mp4_path)
|
13 |
+
|
14 |
+
def merge_times(times, times2):
|
15 |
+
ids = np.unique(np.where(abs(times2[...,None] - times[None]) < 0.2)[1])
|
16 |
+
mask = np.ones_like(times, dtype=np.bool)
|
17 |
+
mask[ids] = False
|
18 |
+
times = times[mask]
|
19 |
+
times = np.concatenate([times, times2])
|
20 |
+
times = np.sort(times)
|
21 |
+
|
22 |
+
return times
|
23 |
+
|
24 |
+
|
25 |
+
def beat_interpolator(wave_path, generator, latent_dim, seed, fps=30, batch_size=1, strength=1, max_duration=None, use_peak=False):
|
26 |
+
fps = max(10, fps)
|
27 |
+
strength = np.clip(strength, 0, 1)
|
28 |
+
hop_length = 512
|
29 |
+
y, sr = librosa.load(wave_path, sr=24000)
|
30 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
31 |
+
|
32 |
+
if max_duration is not None:
|
33 |
+
y_len = y.shape[0]
|
34 |
+
y_idx = int(y_len * max_duration / duration)
|
35 |
+
y = y[:y_idx]
|
36 |
+
|
37 |
+
global wave_path_iter
|
38 |
+
try:
|
39 |
+
wave_path = next(wave_path_iter)
|
40 |
+
except:
|
41 |
+
wave_path_iter = iter(cache_wav_path)
|
42 |
+
wave_path = next(wave_path_iter)
|
43 |
+
sf.write(wave_path, y, sr, subtype='PCM_24')
|
44 |
+
y, sr = librosa.load(wave_path, sr=24000)
|
45 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
46 |
+
|
47 |
+
S = np.abs(librosa.stft(y))
|
48 |
+
db = librosa.power_to_db(S**2, ref=np.median).max(0)
|
49 |
+
db_mean = np.mean(db)
|
50 |
+
db_max = np.max(db)
|
51 |
+
db_min = np.min(db)
|
52 |
+
db_times = librosa.frames_to_time(np.arange(len(db)), sr=sr, hop_length=hop_length)
|
53 |
+
rng = np.random.RandomState(seed)
|
54 |
+
onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512, aggregate=np.median)
|
55 |
+
_, beats = librosa.beat.beat_track(y=y, sr=sr, onset_envelope=onset_env, hop_length=512, units='time')
|
56 |
+
times = np.asarray(beats)
|
57 |
+
if use_peak:
|
58 |
+
peaks = librosa.util.peak_pick(onset_env, 1, 1, 1, 1, 0.8, 5)
|
59 |
+
times2 = librosa.frames_to_time(np.arange(len(onset_env)), sr=sr, hop_length=512)[peaks]
|
60 |
+
times2 = np.asarray(times)
|
61 |
+
times = merge_times(times, times2)
|
62 |
+
|
63 |
+
times = np.concatenate([np.asarray([0.]), times], 0)
|
64 |
+
times = list(np.unique(np.int64(np.floor(times * fps / 2))) * 2)
|
65 |
+
|
66 |
+
latents = []
|
67 |
+
time0 = 0
|
68 |
+
latent0 = rng.randn(latent_dim)
|
69 |
+
for time1 in times:
|
70 |
+
latent1 = rng.randn(latent_dim)
|
71 |
+
db_cur_index = np.argmin(np.abs(db_times - time1.astype('float32') / fps))
|
72 |
+
db_cur = db[db_cur_index]
|
73 |
+
if db_cur < db_min + (db_mean - db_min) / 3:
|
74 |
+
latent1 = latent0 * 0.8 + latent1 * 0.2
|
75 |
+
elif db_cur < db_min + 2 * (db_mean - db_min) / 3:
|
76 |
+
latent1 = latent0 * 0.6 + latent1 * 0.4
|
77 |
+
elif db_cur < db_mean + (db_max - db_mean) / 3:
|
78 |
+
latent1 = latent0 * 0.4 + latent1 * 0.6
|
79 |
+
elif db_cur < db_mean + 2 * (db_max - db_mean) / 3:
|
80 |
+
latent1 = latent0 * 0.2 + latent1 * 0.8
|
81 |
+
else:
|
82 |
+
pass
|
83 |
+
if time1 > duration * fps:
|
84 |
+
time1 = int(duration * fps)
|
85 |
+
t1 = time1 - time0
|
86 |
+
alpha = 0.5 * strength
|
87 |
+
latent2 = latent0 * alpha + latent1 * (1 - alpha)
|
88 |
+
for j in range(t1):
|
89 |
+
alpha = j / t1
|
90 |
+
latent = latent0 * (1 - alpha) + latent2 * alpha
|
91 |
+
latents.append(latent)
|
92 |
+
|
93 |
+
time0 = time1
|
94 |
+
latent0 = latent1
|
95 |
+
|
96 |
+
outs = []
|
97 |
+
ix = 0
|
98 |
+
while True:
|
99 |
+
if ix + batch_size <= len(latents):
|
100 |
+
outs += generator(latents[ix:ix+batch_size])
|
101 |
+
elif ix < len(latents):
|
102 |
+
outs += generator(latents[ix:])
|
103 |
+
break
|
104 |
+
else:
|
105 |
+
break
|
106 |
+
ix += batch_size
|
107 |
+
|
108 |
+
global path_iter
|
109 |
+
try:
|
110 |
+
video_path = next(path_iter)
|
111 |
+
except:
|
112 |
+
path_iter = iter(cache_mp4_path)
|
113 |
+
video_path = next(path_iter)
|
114 |
+
|
115 |
+
video = ImageSequenceClip(outs, fps=fps)
|
116 |
+
audioclip = AudioFileClip(wave_path)
|
117 |
+
|
118 |
+
video = video.set_audio(audioclip)
|
119 |
+
video.write_videofile(video_path, fps=fps)
|
120 |
+
|
121 |
+
return video_path
|
examples/__init__.py
ADDED
File without changes
|
examples/example.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8afffc71afc7b665cf52c5425a85db533bc4b4b0ea878a6812bcb2a99941e5a3
|
3 |
+
size 962186
|
examples/models/__init__.py
ADDED
File without changes
|
examples/models/anime_biggan/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import create_anime_biggan_inference as create
|
examples/models/anime_biggan/model.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import Parameter
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
|
8 |
+
|
9 |
+
def l2_normalize(v, dim=None, eps=1e-12):
|
10 |
+
return v / (v.norm(dim=dim, keepdim=True) + eps)
|
11 |
+
|
12 |
+
|
13 |
+
def unpool(value):
|
14 |
+
"""Unpooling operation.
|
15 |
+
N-dimensional version of the unpooling operation from
|
16 |
+
https://www.robots.ox.ac.uk/~vgg/rg/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf
|
17 |
+
Taken from: https://github.com/tensorflow/tensorflow/issues/2169
|
18 |
+
Args:
|
19 |
+
value: a Tensor of shape [b, d0, d1, ..., dn, ch]
|
20 |
+
name: name of the op
|
21 |
+
Returns:
|
22 |
+
A Tensor of shape [b, 2*d0, 2*d1, ..., 2*dn, ch]
|
23 |
+
"""
|
24 |
+
value = torch.Tensor.permute(value, [0,2,3,1])
|
25 |
+
sh = list(value.shape)
|
26 |
+
dim = len(sh[1:-1])
|
27 |
+
out = (torch.reshape(value, [-1] + sh[-dim:]))
|
28 |
+
for i in range(dim, 0, -1):
|
29 |
+
out = torch.cat([out, torch.zeros_like(out)], i)
|
30 |
+
out_size = [-1] + [s * 2 for s in sh[1:-1]] + [sh[-1]]
|
31 |
+
out = torch.reshape(out, out_size)
|
32 |
+
out = torch.Tensor.permute(out, [0,3,1,2])
|
33 |
+
return out
|
34 |
+
|
35 |
+
|
36 |
+
class BatchNorm2d(nn.BatchNorm2d):
|
37 |
+
def __init__(self, *args, **kwargs):
|
38 |
+
super().__init__(*args, **kwargs)
|
39 |
+
self.initialized = False
|
40 |
+
self.accumulating = False
|
41 |
+
self.accumulated_mean = Parameter(torch.zeros(args[0]), requires_grad=False)
|
42 |
+
self.accumulated_var = Parameter(torch.zeros(args[0]), requires_grad=False)
|
43 |
+
self.accumulated_counter = Parameter(torch.zeros(1)+1e-12, requires_grad=False)
|
44 |
+
|
45 |
+
def forward(self, inputs, *args, **kwargs):
|
46 |
+
if not self.initialized:
|
47 |
+
self.check_accumulation()
|
48 |
+
self.set_initialized(True)
|
49 |
+
if self.accumulating:
|
50 |
+
self.eval()
|
51 |
+
with torch.no_grad():
|
52 |
+
axes = [0] + ([] if len(inputs.shape) == 2 else list(range(2,len(inputs.shape))))
|
53 |
+
_mean = torch.mean(inputs, axes, keepdim=True)
|
54 |
+
mean = torch.mean(inputs, axes, keepdim=False)
|
55 |
+
var = torch.mean((inputs-_mean)**2, axes)
|
56 |
+
self.accumulated_mean.copy_(self.accumulated_mean + mean)
|
57 |
+
self.accumulated_var.copy_(self.accumulated_var + var)
|
58 |
+
self.accumulated_counter.copy_(self.accumulated_counter + 1)
|
59 |
+
_mean = self.running_mean*1.0
|
60 |
+
_variance = self.running_var*1.0
|
61 |
+
self._mean.copy_(self.accumulated_mean / self.accumulated_counter)
|
62 |
+
self._variance.copy_(self.accumulated_var / self.accumulated_counter)
|
63 |
+
out = super().forward(inputs, *args, **kwargs)
|
64 |
+
self.running_mean.copy_(_mean)
|
65 |
+
self.running_var.copy_(_variance)
|
66 |
+
return out
|
67 |
+
out = super().forward(inputs, *args, **kwargs)
|
68 |
+
return out
|
69 |
+
|
70 |
+
def check_accumulation(self):
|
71 |
+
if self.accumulated_counter.detach().cpu().numpy().mean() > 1-1e-12:
|
72 |
+
self.running_mean.copy_(self.accumulated_mean / self.accumulated_counter)
|
73 |
+
self.running_var.copy_(self.accumulated_var / self.accumulated_counter)
|
74 |
+
return True
|
75 |
+
return False
|
76 |
+
|
77 |
+
def clear_accumulated(self):
|
78 |
+
self.accumulated_mean.copy_(self.accumulated_mean*0.0)
|
79 |
+
self.accumulated_var.copy_(self.accumulated_var*0.0)
|
80 |
+
self.accumulated_counter.copy_(self.accumulated_counter*0.0+1e-2)
|
81 |
+
|
82 |
+
def set_accumulating(self, status=True):
|
83 |
+
if status:
|
84 |
+
self.accumulating = True
|
85 |
+
else:
|
86 |
+
self.accumulating = False
|
87 |
+
|
88 |
+
def set_initialized(self, status=False):
|
89 |
+
if not status:
|
90 |
+
self.initialized = False
|
91 |
+
else:
|
92 |
+
self.initialized = True
|
93 |
+
|
94 |
+
|
95 |
+
class SpectralNorm(nn.Module):
|
96 |
+
def __init__(self, module, name='weight', power_iterations=2):
|
97 |
+
super().__init__()
|
98 |
+
self.module = module
|
99 |
+
self.name = name
|
100 |
+
self.power_iterations = power_iterations
|
101 |
+
if not self._made_params():
|
102 |
+
self._make_params()
|
103 |
+
|
104 |
+
def _update_u(self):
|
105 |
+
w = self.weight
|
106 |
+
u = self.weight_u
|
107 |
+
|
108 |
+
if len(w.shape) == 4:
|
109 |
+
_w = torch.Tensor.permute(w, [2,3,1,0])
|
110 |
+
_w = torch.reshape(_w, [-1, _w.shape[-1]])
|
111 |
+
elif isinstance(self.module, nn.Linear) or isinstance(self.module, nn.Embedding):
|
112 |
+
_w = torch.Tensor.permute(w, [1,0])
|
113 |
+
_w = torch.reshape(_w, [-1, _w.shape[-1]])
|
114 |
+
else:
|
115 |
+
_w = torch.reshape(w, [-1, w.shape[-1]])
|
116 |
+
_w = torch.reshape(_w, [-1, _w.shape[-1]])
|
117 |
+
singular_value = "left" if _w.shape[0] <= _w.shape[1] else "right"
|
118 |
+
norm_dim = 0 if _w.shape[0] <= _w.shape[1] else 1
|
119 |
+
for _ in range(self.power_iterations):
|
120 |
+
if singular_value == "left":
|
121 |
+
v = l2_normalize(torch.matmul(_w.t(), u), dim=norm_dim)
|
122 |
+
u = l2_normalize(torch.matmul(_w, v), dim=norm_dim)
|
123 |
+
else:
|
124 |
+
v = l2_normalize(torch.matmul(u, _w.t()), dim=norm_dim)
|
125 |
+
u = l2_normalize(torch.matmul(v, _w), dim=norm_dim)
|
126 |
+
|
127 |
+
if singular_value == "left":
|
128 |
+
sigma = torch.matmul(torch.matmul(u.t(), _w), v)
|
129 |
+
else:
|
130 |
+
sigma = torch.matmul(torch.matmul(v, _w), u.t())
|
131 |
+
_w = w / sigma.detach()
|
132 |
+
setattr(self.module, self.name, _w)
|
133 |
+
self.weight_u.copy_(u.detach())
|
134 |
+
|
135 |
+
def _made_params(self):
|
136 |
+
try:
|
137 |
+
self.weight
|
138 |
+
self.weight_u
|
139 |
+
return True
|
140 |
+
except AttributeError:
|
141 |
+
return False
|
142 |
+
|
143 |
+
def _make_params(self):
|
144 |
+
w = getattr(self.module, self.name)
|
145 |
+
|
146 |
+
if len(w.shape) == 4:
|
147 |
+
_w = torch.Tensor.permute(w, [2,3,1,0])
|
148 |
+
_w = torch.reshape(_w, [-1, _w.shape[-1]])
|
149 |
+
elif isinstance(self.module, nn.Linear) or isinstance(self.module, nn.Embedding):
|
150 |
+
_w = torch.Tensor.permute(w, [1,0])
|
151 |
+
_w = torch.reshape(_w, [-1, _w.shape[-1]])
|
152 |
+
else:
|
153 |
+
_w = torch.reshape(w, [-1, w.shape[-1]])
|
154 |
+
singular_value = "left" if _w.shape[0] <= _w.shape[1] else "right"
|
155 |
+
norm_dim = 0 if _w.shape[0] <= _w.shape[1] else 1
|
156 |
+
u_shape = (_w.shape[0], 1) if singular_value == "left" else (1, _w.shape[-1])
|
157 |
+
|
158 |
+
u = Parameter(w.data.new(*u_shape).normal_(0, 1), requires_grad=False)
|
159 |
+
u.copy_(l2_normalize(u, dim=norm_dim).detach())
|
160 |
+
|
161 |
+
del self.module._parameters[self.name]
|
162 |
+
self.weight = w
|
163 |
+
self.weight_u = u
|
164 |
+
|
165 |
+
def forward(self, *args, **kwargs):
|
166 |
+
self._update_u()
|
167 |
+
return self.module.forward(*args, **kwargs)
|
168 |
+
|
169 |
+
|
170 |
+
class SelfAttention(nn.Module):
|
171 |
+
def __init__(self, in_dim, activation=torch.relu):
|
172 |
+
super().__init__()
|
173 |
+
self.chanel_in = in_dim
|
174 |
+
self.activation = activation
|
175 |
+
|
176 |
+
self.theta = SpectralNorm(nn.Conv2d(in_dim, in_dim // 8, 1, bias=False))
|
177 |
+
self.phi = SpectralNorm(nn.Conv2d(in_dim, in_dim // 8, 1, bias=False))
|
178 |
+
self.pool = nn.MaxPool2d(2, 2)
|
179 |
+
self.g = SpectralNorm(nn.Conv2d(in_dim, in_dim // 2, 1, bias=False))
|
180 |
+
self.o_conv = SpectralNorm(nn.Conv2d(in_dim // 2, in_dim, 1, bias=False))
|
181 |
+
self.gamma = Parameter(torch.zeros(1))
|
182 |
+
|
183 |
+
def forward(self, x):
|
184 |
+
m_batchsize, C, width, height = x.shape
|
185 |
+
N = height * width
|
186 |
+
|
187 |
+
theta = self.theta(x)
|
188 |
+
phi = self.phi(x)
|
189 |
+
phi = self.pool(phi)
|
190 |
+
phi = torch.reshape(phi,(m_batchsize, -1, N // 4))
|
191 |
+
theta = torch.reshape(theta,(m_batchsize, -1, N))
|
192 |
+
theta = torch.Tensor.permute(theta,(0, 2, 1))
|
193 |
+
attention = torch.softmax(torch.bmm(theta, phi), -1)
|
194 |
+
g = self.g(x)
|
195 |
+
g = torch.reshape(self.pool(g),(m_batchsize, -1, N // 4))
|
196 |
+
attn_g = torch.reshape(torch.bmm(g, torch.Tensor.permute(attention,(0, 2, 1))),(m_batchsize, -1, width, height))
|
197 |
+
out = self.o_conv(attn_g)
|
198 |
+
return self.gamma * out + x
|
199 |
+
|
200 |
+
|
201 |
+
class ConditionalBatchNorm2d(nn.Module):
|
202 |
+
def __init__(self, num_features, num_classes, eps=1e-5, momentum=0.1):
|
203 |
+
super().__init__()
|
204 |
+
self.bn_in_cond = BatchNorm2d(num_features, affine=False, eps=eps, momentum=momentum)
|
205 |
+
self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False))
|
206 |
+
self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False))
|
207 |
+
|
208 |
+
def forward(self, x, y):
|
209 |
+
out = self.bn_in_cond(x)
|
210 |
+
|
211 |
+
if isinstance(y, list):
|
212 |
+
gamma, beta = y
|
213 |
+
out = torch.reshape(gamma, (gamma.shape[0], -1, 1, 1)) * out + torch.reshape(beta, (beta.shape[0], -1, 1, 1))
|
214 |
+
return out
|
215 |
+
|
216 |
+
gamma = self.gamma_embed(y)
|
217 |
+
# gamma = gamma + 1
|
218 |
+
beta = self.beta_embed(y)
|
219 |
+
out = torch.reshape(gamma, (gamma.shape[0], -1, 1, 1)) * out + torch.reshape(beta, (beta.shape[0], -1, 1, 1))
|
220 |
+
return out
|
221 |
+
|
222 |
+
|
223 |
+
class ResBlock(nn.Module):
|
224 |
+
def __init__(
|
225 |
+
self,
|
226 |
+
in_channel,
|
227 |
+
out_channel,
|
228 |
+
kernel_size=[3, 3],
|
229 |
+
padding=1,
|
230 |
+
stride=1,
|
231 |
+
n_class=None,
|
232 |
+
conditional=True,
|
233 |
+
activation=torch.relu,
|
234 |
+
upsample=True,
|
235 |
+
downsample=False,
|
236 |
+
z_dim=128,
|
237 |
+
use_attention=False,
|
238 |
+
skip_proj=None
|
239 |
+
):
|
240 |
+
super().__init__()
|
241 |
+
|
242 |
+
if conditional:
|
243 |
+
self.cond_norm1 = ConditionalBatchNorm2d(in_channel, z_dim)
|
244 |
+
|
245 |
+
self.conv0 = SpectralNorm(
|
246 |
+
nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding)
|
247 |
+
)
|
248 |
+
|
249 |
+
if conditional:
|
250 |
+
self.cond_norm2 = ConditionalBatchNorm2d(out_channel, z_dim)
|
251 |
+
|
252 |
+
self.conv1 = SpectralNorm(
|
253 |
+
nn.Conv2d(out_channel, out_channel, kernel_size, stride, padding)
|
254 |
+
)
|
255 |
+
|
256 |
+
self.skip_proj = False
|
257 |
+
if skip_proj is not True and (upsample or downsample):
|
258 |
+
self.conv_sc = SpectralNorm(nn.Conv2d(in_channel, out_channel, 1, 1, 0))
|
259 |
+
self.skip_proj = True
|
260 |
+
|
261 |
+
if use_attention:
|
262 |
+
self.attention = SelfAttention(out_channel)
|
263 |
+
|
264 |
+
self.upsample = upsample
|
265 |
+
self.downsample = downsample
|
266 |
+
self.activation = activation
|
267 |
+
self.conditional = conditional
|
268 |
+
self.use_attention = use_attention
|
269 |
+
|
270 |
+
def forward(self, input, condition=None):
|
271 |
+
out = input
|
272 |
+
|
273 |
+
if self.conditional:
|
274 |
+
out = self.cond_norm1(out, condition if not isinstance(condition, list) else condition[0])
|
275 |
+
out = self.activation(out)
|
276 |
+
if self.upsample:
|
277 |
+
out = unpool(out) # out = F.interpolate(out, scale_factor=2)
|
278 |
+
out = self.conv0(out)
|
279 |
+
if self.conditional:
|
280 |
+
out = self.cond_norm2(out, condition if not isinstance(condition, list) else condition[1])
|
281 |
+
out = self.activation(out)
|
282 |
+
out = self.conv1(out)
|
283 |
+
|
284 |
+
if self.downsample:
|
285 |
+
out = F.avg_pool2d(out, 2, 2)
|
286 |
+
|
287 |
+
if self.skip_proj:
|
288 |
+
skip = input
|
289 |
+
if self.upsample:
|
290 |
+
skip = unpool(skip) # skip = F.interpolate(skip, scale_factor=2)
|
291 |
+
skip = self.conv_sc(skip)
|
292 |
+
if self.downsample:
|
293 |
+
skip = F.avg_pool2d(skip, 2, 2)
|
294 |
+
out = out + skip
|
295 |
+
else:
|
296 |
+
skip = input
|
297 |
+
|
298 |
+
if self.use_attention:
|
299 |
+
out = self.attention(out)
|
300 |
+
|
301 |
+
return out
|
302 |
+
|
303 |
+
|
304 |
+
class Generator(nn.Module):
|
305 |
+
def __init__(self, code_dim=128, n_class=1000, chn=96, blocks_with_attention="B4", resolution=512):
|
306 |
+
super().__init__()
|
307 |
+
|
308 |
+
def GBlock(in_channel, out_channel, n_class, z_dim, use_attention):
|
309 |
+
return ResBlock(in_channel, out_channel, n_class=n_class, z_dim=z_dim, use_attention=use_attention)
|
310 |
+
|
311 |
+
self.embed_y = nn.Linear(n_class, 128, bias=False)
|
312 |
+
|
313 |
+
self.chn = chn
|
314 |
+
self.resolution = resolution
|
315 |
+
self.blocks_with_attention = set(blocks_with_attention.split(","))
|
316 |
+
self.blocks_with_attention.discard('')
|
317 |
+
|
318 |
+
gblock = []
|
319 |
+
in_channels, out_channels = self.get_in_out_channels()
|
320 |
+
self.num_split = len(in_channels) + 1
|
321 |
+
|
322 |
+
z_dim = code_dim//self.num_split + 128
|
323 |
+
self.noise_fc = SpectralNorm(nn.Linear(code_dim//self.num_split, 4 * 4 * in_channels[0]))
|
324 |
+
|
325 |
+
self.sa_ids = [int(s.split('B')[-1]) for s in self.blocks_with_attention]
|
326 |
+
|
327 |
+
for i, (nc_in, nc_out) in enumerate(zip(in_channels, out_channels)):
|
328 |
+
gblock.append(GBlock(nc_in, nc_out, n_class=n_class, z_dim=z_dim, use_attention=(i+1) in self.sa_ids))
|
329 |
+
self.blocks = nn.ModuleList(gblock)
|
330 |
+
|
331 |
+
self.output_layer_bn = BatchNorm2d(1 * chn, eps=1e-5)
|
332 |
+
self.output_layer_conv = SpectralNorm(nn.Conv2d(1 * chn, 3, [3, 3], padding=1))
|
333 |
+
|
334 |
+
self.z_dim = code_dim
|
335 |
+
self.c_dim = n_class
|
336 |
+
self.n_level = self.num_split
|
337 |
+
|
338 |
+
def get_in_out_channels(self):
|
339 |
+
resolution = self.resolution
|
340 |
+
if resolution == 1024:
|
341 |
+
channel_multipliers = [16, 16, 8, 8, 4, 2, 1, 1, 1]
|
342 |
+
elif resolution == 512:
|
343 |
+
channel_multipliers = [16, 16, 8, 8, 4, 2, 1, 1]
|
344 |
+
elif resolution == 256:
|
345 |
+
channel_multipliers = [16, 16, 8, 8, 4, 2, 1]
|
346 |
+
elif resolution == 128:
|
347 |
+
channel_multipliers = [16, 16, 8, 4, 2, 1]
|
348 |
+
elif resolution == 64:
|
349 |
+
channel_multipliers = [16, 16, 8, 4, 2]
|
350 |
+
elif resolution == 32:
|
351 |
+
channel_multipliers = [4, 4, 4, 4]
|
352 |
+
else:
|
353 |
+
raise ValueError("Unsupported resolution: {}".format(resolution))
|
354 |
+
in_channels = [self.chn * c for c in channel_multipliers[:-1]]
|
355 |
+
out_channels = [self.chn * c for c in channel_multipliers[1:]]
|
356 |
+
return in_channels, out_channels
|
357 |
+
|
358 |
+
def forward(self, input, class_id):
|
359 |
+
codes = torch.chunk(input, self.num_split, 1)
|
360 |
+
class_emb = self.embed_y(class_id) # 128
|
361 |
+
out = self.noise_fc(codes[0])
|
362 |
+
out = torch.Tensor.permute(torch.reshape(out,(out.shape[0], 4, 4, -1)),(0, 3, 1, 2))
|
363 |
+
for i, (code, gblock) in enumerate(zip(codes[1:], self.blocks)):
|
364 |
+
condition = torch.cat([code, class_emb], 1)
|
365 |
+
out = gblock(out, condition)
|
366 |
+
|
367 |
+
out = self.output_layer_bn(out)
|
368 |
+
out = torch.relu(out)
|
369 |
+
out = self.output_layer_conv(out)
|
370 |
+
|
371 |
+
return (torch.tanh(out) + 1) / 2
|
372 |
+
|
373 |
+
def forward_w(self, ws):
|
374 |
+
out = self.noise_fc(ws[0])
|
375 |
+
out = torch.Tensor.permute(torch.reshape(out,(out.shape[0], 4, 4, -1)),(0, 3, 1, 2))
|
376 |
+
for i, (w, gblock) in enumerate(zip(ws[1:], self.blocks)):
|
377 |
+
out = gblock(out, w)
|
378 |
+
|
379 |
+
out = self.output_layer_bn(out)
|
380 |
+
out = torch.relu(out)
|
381 |
+
out = self.output_layer_conv(out)
|
382 |
+
|
383 |
+
return (torch.tanh(out) + 1) / 2
|
384 |
+
|
385 |
+
def forward_wp(self, z0, gammas, betas):
|
386 |
+
out = self.noise_fc(z0)
|
387 |
+
out = torch.Tensor.permute(torch.reshape(out,(out.shape[0], 4, 4, -1)),(0, 3, 1, 2))
|
388 |
+
for i, (gamma, beta, gblock) in enumerate(zip(gammas, betas, self.blocks)):
|
389 |
+
out = gblock(out, [[gamma[0], beta[0]], [gamma[1], beta[1]]])
|
390 |
+
|
391 |
+
out = self.output_layer_bn(out)
|
392 |
+
out = torch.relu(out)
|
393 |
+
out = self.output_layer_conv(out)
|
394 |
+
|
395 |
+
return (torch.tanh(out) + 1) / 2
|
396 |
+
|
397 |
+
|
398 |
+
|
399 |
+
def create_anime_biggan_inference():
|
400 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
401 |
+
anime_biggan = Generator(
|
402 |
+
code_dim=140, n_class=1000, chn=96,
|
403 |
+
blocks_with_attention="B5", resolution=256
|
404 |
+
)
|
405 |
+
state = torch.load(
|
406 |
+
hf_hub_download('HighCWu/anime-biggan-pytorch',
|
407 |
+
f'pytorch_model.bin'),
|
408 |
+
map_location='cpu'
|
409 |
+
)
|
410 |
+
anime_biggan.load_state_dict(state)
|
411 |
+
anime_biggan.to(device)
|
412 |
+
anime_biggan.eval()
|
413 |
+
|
414 |
+
@torch.inference_mode()
|
415 |
+
def anime_biggan_generator(latents):
|
416 |
+
latents = [torch.from_numpy(latent).float().to(device) for latent in latents]
|
417 |
+
latents = torch.stack(latents)
|
418 |
+
label = torch.zeros([latents.shape[0], anime_biggan.c_dim], device=device)
|
419 |
+
label[:,0] = 1
|
420 |
+
out = anime_biggan(latents, label)
|
421 |
+
outs = []
|
422 |
+
for out_i in out:
|
423 |
+
out_i = (out_i.permute(1,2,0) * 255).clamp(0,255).cpu().numpy()
|
424 |
+
out_i = np.uint8(out_i)
|
425 |
+
outs.append(out_i)
|
426 |
+
return outs
|
427 |
+
|
428 |
+
return {
|
429 |
+
'name': 'Anime Biggan',
|
430 |
+
'generator': anime_biggan_generator,
|
431 |
+
'latent_dim': anime_biggan.z_dim,
|
432 |
+
'fps': 5,
|
433 |
+
'batch_size': 1,
|
434 |
+
'strength': 0.45,
|
435 |
+
'max_duration': 15,
|
436 |
+
'use_peak': True
|
437 |
+
}
|
examples/models/celeba256/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import create_celeba256_inference as create
|
examples/models/celeba256/model.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def create_celeba256_inference():
|
6 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
7 |
+
use_gpu = True if torch.cuda.is_available() else False
|
8 |
+
celeba256 = torch.hub.load(
|
9 |
+
'facebookresearch/pytorch_GAN_zoo:hub',
|
10 |
+
'PGAN',
|
11 |
+
model_name='celebAHQ-256',
|
12 |
+
pretrained=True,
|
13 |
+
useGPU=use_gpu
|
14 |
+
)
|
15 |
+
celeba256_noise, _ = celeba256.buildNoiseData(1)
|
16 |
+
@torch.inference_mode()
|
17 |
+
def celeba256_generator(latents):
|
18 |
+
latents = [torch.from_numpy(latent).float().to(device) for latent in latents]
|
19 |
+
latents = torch.stack(latents)
|
20 |
+
out = celeba256.test(latents)
|
21 |
+
outs = []
|
22 |
+
for out_i in out:
|
23 |
+
out_i = ((out_i.permute(1,2,0) + 1) * 127.5).clamp(0,255).cpu().numpy()
|
24 |
+
out_i = np.uint8(out_i)
|
25 |
+
outs.append(out_i)
|
26 |
+
return outs
|
27 |
+
|
28 |
+
return {
|
29 |
+
'name': 'Celeba256',
|
30 |
+
'generator': celeba256_generator,
|
31 |
+
'latent_dim': celeba256_noise.shape[1],
|
32 |
+
'fps': 5,
|
33 |
+
'batch_size': 1,
|
34 |
+
'strength': 0.6,
|
35 |
+
'max_duration': 20,
|
36 |
+
'use_peak': True
|
37 |
+
}
|
examples/models/fashion/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import create_fashion_inference as create
|
examples/models/fashion/model.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def create_fashion_inference():
|
6 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
7 |
+
use_gpu = True if torch.cuda.is_available() else False
|
8 |
+
fashion = torch.hub.load('facebookresearch/pytorch_GAN_zoo:hub', 'DCGAN', pretrained=True, useGPU=use_gpu)
|
9 |
+
fashion_noise, _ = fashion.buildNoiseData(1)
|
10 |
+
@torch.inference_mode()
|
11 |
+
def fashion_generator(latents):
|
12 |
+
latents = [torch.from_numpy(latent).float().to(device) for latent in latents]
|
13 |
+
latents = torch.stack(latents)
|
14 |
+
out = fashion.test(latents)
|
15 |
+
outs = []
|
16 |
+
for out_i in out:
|
17 |
+
out_i = ((out_i.permute(1,2,0) + 1) * 127.5).clamp(0,255).cpu().numpy()
|
18 |
+
out_i = np.uint8(out_i)
|
19 |
+
outs.append(out_i)
|
20 |
+
return outs
|
21 |
+
|
22 |
+
return {
|
23 |
+
'name': 'Fashion',
|
24 |
+
'generator': fashion_generator,
|
25 |
+
'latent_dim': fashion_noise.shape[1],
|
26 |
+
'fps': 15,
|
27 |
+
'batch_size': 8,
|
28 |
+
'strength': 0.6,
|
29 |
+
'max_duration': 30,
|
30 |
+
'use_peak': True
|
31 |
+
}
|
examples/models/mnist/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import create_mnist_inference as create
|
examples/models/mnist/mnist_generator.pretrained
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f6628c922425612cf21f48ed3325310c51441b279a86296fd0fa7041451296b
|
3 |
+
size 2268434
|
examples/models/mnist/model.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class Generator(nn.Module):
|
8 |
+
'''Refer to https://github.com/safwankdb/Vanilla-GAN'''
|
9 |
+
def __init__(self):
|
10 |
+
super(Generator, self).__init__()
|
11 |
+
self.n_features = 128
|
12 |
+
self.n_out = 784
|
13 |
+
self.fc0 = nn.Sequential(
|
14 |
+
nn.Linear(self.n_features, 256),
|
15 |
+
nn.LeakyReLU(0.2)
|
16 |
+
)
|
17 |
+
self.fc1 = nn.Sequential(
|
18 |
+
nn.Linear(256, 512),
|
19 |
+
nn.LeakyReLU(0.2)
|
20 |
+
)
|
21 |
+
self.fc2 = nn.Sequential(
|
22 |
+
nn.Linear(512, 784),
|
23 |
+
nn.Tanh()
|
24 |
+
)
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.fc0(x)
|
27 |
+
x = self.fc1(x)
|
28 |
+
x = self.fc2(x)
|
29 |
+
x = x.view(-1, 1, 28, 28)
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
def create_mnist_inference():
|
34 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
35 |
+
mnist = Generator()
|
36 |
+
state = torch.load(
|
37 |
+
os.path.join(
|
38 |
+
os.path.dirname(__file__),
|
39 |
+
'mnist_generator.pretrained'
|
40 |
+
),
|
41 |
+
map_location='cpu'
|
42 |
+
)
|
43 |
+
mnist.load_state_dict(state)
|
44 |
+
mnist.to(device)
|
45 |
+
mnist.eval()
|
46 |
+
|
47 |
+
@torch.inference_mode()
|
48 |
+
def mnist_generator(latents):
|
49 |
+
latents = [torch.from_numpy(latent).float().to(device) for latent in latents]
|
50 |
+
latents = torch.stack(latents)
|
51 |
+
out = mnist(latents)
|
52 |
+
outs = []
|
53 |
+
for out_i in out:
|
54 |
+
out_i = ((out_i[0] + 1) * 127.5).clamp(0,255).cpu().numpy()
|
55 |
+
out_i = np.uint8(out_i)
|
56 |
+
out_i = np.stack([out_i]*3, -1)
|
57 |
+
outs.append(out_i)
|
58 |
+
return outs
|
59 |
+
|
60 |
+
return {
|
61 |
+
'name': 'MNIST',
|
62 |
+
'generator': mnist_generator,
|
63 |
+
'latent_dim': 128,
|
64 |
+
'fps': 20,
|
65 |
+
'batch_size': 8,
|
66 |
+
'strength': 0.75,
|
67 |
+
'max_duration': 30,
|
68 |
+
'use_peak': True
|
69 |
+
}
|
packages.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
liblzma-dev
|
2 |
+
libsndfile1
|
3 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.0.4
|
2 |
+
huggingface-hub==0.6.0
|
3 |
+
moviepy==1.0.3
|
4 |
+
Pillow==9.0.1
|
5 |
+
torch==1.11.0
|
6 |
+
torchvision==0.12.0
|
7 |
+
librosa
|
8 |
+
soundfile
|