Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -51,7 +51,7 @@ def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
|
|
51 |
plt.axis("off")
|
52 |
return fig2img(plt.gcf())
|
53 |
|
54 |
-
def
|
55 |
|
56 |
#Extract model and feature extractor
|
57 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
@@ -68,8 +68,29 @@ def detect_objects(model_name,url,image_upload,threshold):
|
|
68 |
|
69 |
if validators.url(url):
|
70 |
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
image = image_upload
|
74 |
|
75 |
#Make prediction
|
@@ -78,7 +99,7 @@ def detect_objects(model_name,url,image_upload,threshold):
|
|
78 |
#Visualize prediction
|
79 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
80 |
|
81 |
-
return viz_img
|
82 |
|
83 |
#examples=[['facebook/detr-resnet-50','https://media-cldnry.s-nbcnews.com/image/upload/t_fit-1500w,f_auto,q_auto:best/newscms/2020_14/3290756/200331-wall-street-ew-#343p.jpg',,0.7]
|
84 |
|
@@ -123,8 +144,8 @@ with demo:
|
|
123 |
img_but = gr.Button('Detect')
|
124 |
|
125 |
|
126 |
-
url_but.click(
|
127 |
-
img_but.click(detect_objects,inputs=[options,
|
128 |
|
129 |
|
130 |
demo.launch(enable_queue=True)
|
|
|
51 |
plt.axis("off")
|
52 |
return fig2img(plt.gcf())
|
53 |
|
54 |
+
def detect_objects_from_url(model_name,url,threshold):
|
55 |
|
56 |
#Extract model and feature extractor
|
57 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
|
|
68 |
|
69 |
if validators.url(url):
|
70 |
image = Image.open(requests.get(url, stream=True).raw)
|
71 |
+
|
72 |
+
#Make prediction
|
73 |
+
processed_outputs = make_prediction(image, feature_extractor, model)
|
74 |
+
|
75 |
+
#Visualize prediction
|
76 |
+
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
77 |
+
|
78 |
+
return viz_img
|
79 |
+
|
80 |
+
def detect_objects_from_upload(model_name,image_upload,threshold):
|
81 |
+
|
82 |
+
#Extract model and feature extractor
|
83 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
84 |
+
|
85 |
+
if 'detr' in model_name:
|
86 |
+
|
87 |
+
model = DetrForObjectDetection.from_pretrained(model_name)
|
88 |
+
|
89 |
+
elif 'yolos' in model_name:
|
90 |
+
|
91 |
+
model = YolosForObjectDetection.from_pretrained(model_name)
|
92 |
|
93 |
+
if image_upload:
|
94 |
image = image_upload
|
95 |
|
96 |
#Make prediction
|
|
|
99 |
#Visualize prediction
|
100 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
101 |
|
102 |
+
return viz_img
|
103 |
|
104 |
#examples=[['facebook/detr-resnet-50','https://media-cldnry.s-nbcnews.com/image/upload/t_fit-1500w,f_auto,q_auto:best/newscms/2020_14/3290756/200331-wall-street-ew-#343p.jpg',,0.7]
|
105 |
|
|
|
144 |
img_but = gr.Button('Detect')
|
145 |
|
146 |
|
147 |
+
url_but.click(detect_objects_from_url,inputs=[options,url_input,slider_input],outputs=img_output_from_url,queue=True)
|
148 |
+
img_but.click(detect_objects,inputs=[options,img_input,slider_input],outputs=img_output_from_upload,queue=True)
|
149 |
|
150 |
|
151 |
demo.launch(enable_queue=True)
|