Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import plotly.express as px
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import umap
|
8 |
+
|
9 |
+
embedding_df = pd.read_csv('all-MiniLM-L12-v2_embeddings.csv')
|
10 |
+
embeddings = np.array(embedding_df.drop('id', axis=1))
|
11 |
+
|
12 |
+
feature_df = pd.read_csv('feature_df.csv', index_col=0)
|
13 |
+
feature_df= (feature_df - feature_df.mean() ) / feature_df.std() #standardize
|
14 |
+
|
15 |
+
info_df = pd.read_csv('song_info_df.csv')
|
16 |
+
info_df.sort_values(['artist_name','song_title'], inplace=True)
|
17 |
+
|
18 |
+
def feature_similarity(song_id):
|
19 |
+
|
20 |
+
|
21 |
+
std_drop = 4 #drop songs with strange values
|
22 |
+
|
23 |
+
song_vec = feature_df[feature_df.index.isin([song_id])].to_numpy()
|
24 |
+
songs_matrix = feature_df[~feature_df.index.isin([song_id])].copy()
|
25 |
+
songs_matrix = songs_matrix[(songs_matrix<std_drop).any(axis=1)]
|
26 |
+
song_ids = list(songs_matrix.index)
|
27 |
+
songs_matrix=songs_matrix.to_numpy()
|
28 |
+
|
29 |
+
num_dims=songs_matrix.shape[1]
|
30 |
+
distances = np.sqrt(np.square(songs_matrix-song_vec) @ np.ones(num_dims)) #compute euclidean distance
|
31 |
+
max_distance = np.nanmax(distances)
|
32 |
+
similarities = (max_distance - distances)/max_distance #low distance -> high similarity
|
33 |
+
|
34 |
+
return pd.DataFrame({'song_id': song_ids, 'feature_similarity': similarities})
|
35 |
+
|
36 |
+
|
37 |
+
def embedding_similarity(song_id):
|
38 |
+
|
39 |
+
song_index = embedding_df[embedding_df.id==song_id].index.values[0]
|
40 |
+
song_ids = embedding_df[embedding_df.id != song_id].id.to_list()
|
41 |
+
emb_matrix = np.delete(np.copy(embeddings), song_index, axis=0)
|
42 |
+
similarities = cosine_similarity(emb_matrix, np.expand_dims(np.copy(embeddings[song_index,:]), axis=0))
|
43 |
+
|
44 |
+
return pd.DataFrame({'song_id': song_ids, 'cosine_similarity': similarities[:,0]})
|
45 |
+
|
46 |
+
def decode(song_id):
|
47 |
+
temp_df = info_df[info_df.song_id == song_id]
|
48 |
+
artist = temp_df.artist_name.values[0]
|
49 |
+
song = temp_df.song_title.values[0]
|
50 |
+
youtube_url = f"""<a href=https://www.youtube.com/results?search_query=
|
51 |
+
{artist.replace(' ','+')}+{song}.replace(' ','+') target=_blank>{song}</a>"""
|
52 |
+
url = f'''<a href="https://www.youtube.com/results?search_query=
|
53 |
+
{artist.strip().replace(' ','+')}+{song.strip().replace(' ','+')}" target="_blank" style="color:blue; text-decoration: underline">
|
54 |
+
{song} </a> by {artist}'''
|
55 |
+
return url
|
56 |
+
|
57 |
+
def plot(artist, song):
|
58 |
+
plot_df['color'] = 'blue'
|
59 |
+
plot_df.loc[(plot_df.artist_name==artist) & (plot_df.song_title==song), 'color'] = 'red'
|
60 |
+
plot_df['size'] = 1.5
|
61 |
+
plot_df.loc[(plot_df.artist_name==artist) & (plot_df.song_title==song), 'size'] = 3
|
62 |
+
try:
|
63 |
+
fig2.data=[]
|
64 |
+
except:
|
65 |
+
pass
|
66 |
+
|
67 |
+
fig2 = px.scatter(plot_df[~((plot_df.artist_name==artist) & (plot_df.song_title==song))],
|
68 |
+
'x',
|
69 |
+
'y',
|
70 |
+
template='simple_white',
|
71 |
+
hover_data=['artist_name', 'song_title']).update_traces(marker_size=1.5, marker_opacity=0.7)
|
72 |
+
fig2.add_trace(go.Scatter(x=[plot_df.loc[(plot_df.artist_name==artist) & (plot_df.song_title==song), 'x'].values[0]],
|
73 |
+
y=[plot_df.loc[(plot_df.artist_name==artist) & (plot_df.song_title==song), 'y'].values[0]],
|
74 |
+
mode = 'markers',
|
75 |
+
marker_color='red',
|
76 |
+
hovertemplate="Your selected song<extra></extra>",
|
77 |
+
marker_size = 4))
|
78 |
+
fig2.update_xaxes(visible=False)
|
79 |
+
fig2.update_yaxes(visible=False)
|
80 |
+
fig2.update_layout(showlegend=False, height = 800, width =1600)
|
81 |
+
fig2.data = [fig2.data[1], fig2.data[0]]
|
82 |
+
return fig2
|
83 |
+
|
84 |
+
def recommend(artist, song_title, embedding_importance, topk=5):
|
85 |
+
|
86 |
+
feature_importance = 1 - embedding_importance
|
87 |
+
song_id = info_df[(info_df.artist_name == artist) & (info_df.song_title == song_title)]['song_id'].values[0]
|
88 |
+
|
89 |
+
feature_sim = feature_similarity(song_id)
|
90 |
+
embedding_sim = embedding_similarity(song_id)
|
91 |
+
result = embedding_sim.merge(feature_sim, how='left',on='song_id').dropna()
|
92 |
+
|
93 |
+
result['cosine_similarity'] = (result['cosine_similarity'] - result['cosine_similarity'].min())/ \
|
94 |
+
(result['cosine_similarity'].max() - result['cosine_similarity'].min())
|
95 |
+
result['feature_similarity'] = (result['feature_similarity'] - result['feature_similarity'].min())/ \
|
96 |
+
(result['feature_similarity'].max() - result['feature_similarity'].min())
|
97 |
+
|
98 |
+
result['score'] = embedding_importance*result.cosine_similarity + feature_importance*result.feature_similarity
|
99 |
+
|
100 |
+
exclude_phrases = [r'clean', 'interlude', 'acoustic', r'mix', 'intro', r'original', 'version',\
|
101 |
+
'edited', 'extended']
|
102 |
+
|
103 |
+
result = result[~result.song_id.isin(info_df[info_df.song_title.str.lower().str.contains('|'.join(exclude_phrases))].song_id)]
|
104 |
+
|
105 |
+
body='<br>'.join([decode(x) for x in result.sort_values('score', ascending=False).head(topk).song_id.to_list()])
|
106 |
+
fig = plot(artist, song_title)
|
107 |
+
return f'<h3 style="text-align: center;">Recomendations</h3><p style="text-align: center;"><br>{body}</p>', fig
|
108 |
+
|
109 |
+
|
110 |
+
out = umap.UMAP(n_neighbors=30, min_dist=0.2).fit_transform(embedding_df.iloc[:,:-1])
|
111 |
+
plot_df = pd.DataFrame({'x':out[:,0],'y':out[:,1],'id':embedding_df.id, 'size':0.1})
|
112 |
+
plot_df['x'] = ((plot_df['x'] - plot_df['x'].mean())/plot_df['x'].std())
|
113 |
+
plot_df['y'] = ((plot_df['y'] - plot_df['y'].mean())/plot_df['y'].std())
|
114 |
+
plot_df = plot_df.merge(info_df, left_on='id', right_on='song_id')
|
115 |
+
plot_df = plot_df[(plot_df.x.abs()<4) & (plot_df.y.abs()<4)]
|
116 |
+
|
117 |
+
fig = px.scatter(plot_df,
|
118 |
+
'x',
|
119 |
+
'y',
|
120 |
+
template='simple_white',
|
121 |
+
hover_data=['artist_name', 'song_title']
|
122 |
+
).update_traces(marker_size=1.5,
|
123 |
+
opacity=0.7,
|
124 |
+
|
125 |
+
)
|
126 |
+
fig.update_xaxes(visible=False)
|
127 |
+
fig.update_yaxes(visible=False).update_layout(height = 800,
|
128 |
+
width =1600,
|
129 |
+
title = {
|
130 |
+
'text': "UMAP Projection of Lyric Embeddings",
|
131 |
+
'y':0.9,
|
132 |
+
'x':0.5,
|
133 |
+
'xanchor': 'center',
|
134 |
+
'yanchor': 'top'
|
135 |
+
})
|
136 |
+
|
137 |
+
app = gr.Blocks()
|
138 |
+
|
139 |
+
|
140 |
+
with app:
|
141 |
+
gr.Markdown("# Hip Hop gRadio - A Lyric Based Recommender")
|
142 |
+
|
143 |
+
gr.Markdown("""### About this space
|
144 |
+
The goal of this space is to provide recommendations for hip-hop/rap songs strictly by utilizing lyrics. The recommendations
|
145 |
+
are a combination of ranked similarity scores. We calculate euclidean distances between our engineered feature vectors for each song,
|
146 |
+
as well as a cosine distance between document embeddings of the lyrics themselves. A weighted average of these two results in our
|
147 |
+
final similarity score that we use for recommendation. (feature importance = (1 - embedding importance))
|
148 |
+
|
149 |
+
Additionally, we provide a 2-D projection of all document embeddings below. After entering a song of your choice, you will see it as
|
150 |
+
a red dot, allowing you to explore both near and far. This projection reduces 384-dimensional embeddings down to 2-d, allowing visualization.
|
151 |
+
This is done using Uniform Manifold Approximation and Projection [(UMAP)](https://umap-learn.readthedocs.io/en/latest/), a very interesting approach to dimensionalty
|
152 |
+
reduction, I encourage you to look into it if you are interested! ([paper](https://arxiv.org/abs/1802.03426))
|
153 |
+
|
154 |
+
The engineered features used are the following: song duration, number of lines, syllables per line, variance in syllables per line,
|
155 |
+
total unique tokens, lexical diversity (measure of repitition), sentiment (using nltk VADER), tokens per second, and syllables per second.
|
156 |
+
|
157 |
+
**Model used for embedding**: [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)<br/>
|
158 |
+
**Lyrics**: from [genius](https://genius.com/)
|
159 |
+
""")
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
+
artist = gr.Dropdown(choices = list(info_df.artist_name.unique()),
|
163 |
+
value = 'Kanye West',
|
164 |
+
label='Artist')
|
165 |
+
song = gr.Dropdown(choices = list(info_df.loc[info_df.artist_name=='Kanye West','song_title']),
|
166 |
+
label = 'Song Title')
|
167 |
+
slider = gr.Slider(0,1,value=0.5, label='Embedding Importance')
|
168 |
+
but = gr.Button()
|
169 |
+
with gr.Column():
|
170 |
+
t = gr.Markdown()
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
p = gr.Plot(fig)
|
174 |
+
|
175 |
+
def artist_songs(artist):
|
176 |
+
return gr.components.Dropdown.update(choices=info_df[info_df.artist_name == artist]['song_title'].to_list())
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
artist.change(artist_songs, artist, outputs=song)
|
181 |
+
but.click(recommend, inputs=[artist, song,slider], outputs=[t, p])
|
182 |
+
|
183 |
+
app.launch()
|