Gosula commited on
Commit
2b7b059
1 Parent(s): 607bd68

Create stablediffusion.py

Browse files
Files changed (1) hide show
  1. stablediffusion.py +196 -0
stablediffusion.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from base64 import b64encode
2
+ from utils import *
3
+ import numpy
4
+ import torch
5
+ from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
6
+ from huggingface_hub import notebook_login
7
+
8
+ # For video display:
9
+ from IPython.display import HTML
10
+ from matplotlib import pyplot as plt
11
+ from pathlib import Path
12
+ from PIL import Image
13
+ from torch import autocast
14
+ from torchvision import transforms as tfms
15
+ from tqdm.auto import tqdm
16
+ from transformers import CLIPTextModel, CLIPTokenizer, logging
17
+ import os
18
+ import shutil
19
+ from device import torch_device,vae,text_encoder,unet,tokenizer,scheduler,token_emb_layer,pos_emb_layer,position_embeddings
20
+ torch.manual_seed(1)
21
+ if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
22
+
23
+ # Supress some unnecessary warnings when loading the CLIPTextModel
24
+ logging.set_verbosity_error()
25
+
26
+ # Set device
27
+
28
+
29
+ def generate_distorted_image(pil_image,vae):
30
+ # View a noised version
31
+ encoded = pil_to_latent(pil_image)
32
+ noise = torch.randn_like(encoded) # Random noise
33
+
34
+ sampling_step = 5 # Equivalent to step 10 out of 15 in the schedule above
35
+ # encoded_and_noised = scheduler.add_noise(encoded, noise, timestep) # Diffusers 0.3 and below
36
+ encoded_and_noised = scheduler.add_noise(encoded, noise, timesteps=torch.tensor([scheduler.timesteps[sampling_step]]))
37
+ return latents_to_pil(encoded_and_noised)[0] # Display
38
+
39
+ def set_timesteps(scheduler, num_inference_steps):
40
+ scheduler.set_timesteps(num_inference_steps)
41
+ scheduler.timesteps = scheduler.timesteps.to(torch.float32)
42
+
43
+
44
+ # Some settings
45
+ def generate_image(prompt,concept_embed,num_inference_steps=50,color_postprocessing=False,noised_image=False,loss_scale=10,seed=42):
46
+ height = 512 # default height of Stable Diffusion
47
+ width = 512 # default width of Stable Diffusion
48
+ num_inference_steps = num_inference_steps # Number of denoising steps
49
+ guidance_scale = 7.5 # Scale for classifier-free guidance
50
+ generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
51
+ batch_size = 1
52
+ # Define the directory name
53
+ directory_name = "steps"
54
+
55
+ # Check if the directory exists, and if so, delete it
56
+ if os.path.exists(directory_name):
57
+ shutil.rmtree(directory_name)
58
+
59
+ #Create the directory
60
+ os.makedirs(directory_name)
61
+ # Prep text
62
+ #text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
63
+ # with torch.no_grad():
64
+ # text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
65
+
66
+ text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
67
+ input_ids = text_input.input_ids.to(torch_device)
68
+ custom_style_token=tokenizer.encode("cs",add_special_token=False)[0]
69
+ # Get token embeddings
70
+ token_embeddings = token_emb_layer(input_ids)
71
+ embed_key=list(concept_embed.keys())[0]
72
+ # The new embedding. In this case just the input embedding of token 2368...
73
+ replacement_token_embedding = concept_embed[embed_key]
74
+ token_embeddings[0,torch.where(input_ids[0]==custom_style_token)]=replacement_token_embedding.to(torch_device)
75
+ # Combine with pos embs
76
+ input_embeddings = token_embeddings + position_embeddings
77
+
78
+ # Feed through to get final output embs
79
+ modified_output_embeddings = get_output_embeds(input_embeddings)
80
+
81
+ max_length = text_input.input_ids.shape[-1]
82
+ uncond_input = tokenizer(
83
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
84
+ )
85
+ with torch.no_grad():
86
+ uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
87
+ text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings])
88
+
89
+ # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
90
+
91
+ set_timesteps(scheduler,num_inference_steps)
92
+
93
+ # Prep latents
94
+ latents = torch.randn(
95
+ (batch_size, unet.in_channels, height // 8, width // 8),
96
+ generator=generator,
97
+ )
98
+ latents = latents.to(torch_device)
99
+ latents = latents * scheduler.init_noise_sigma # Scaling (previous versions did latents = latents * self.scheduler.sigmas[0]
100
+
101
+ # Loop
102
+ with autocast("cuda"): # will fallback to CPU if no CUDA; no autocast for MPS
103
+ for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
104
+ # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
105
+ latent_model_input = torch.cat([latents] * 2)
106
+ sigma = scheduler.sigmas[i]
107
+ # Scale the latents (preconditioning):
108
+ # latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) # Diffusers 0.3 and below
109
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
110
+
111
+ # predict the noise residual
112
+ with torch.no_grad():
113
+ noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
114
+
115
+ # perform guidance
116
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
117
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
118
+
119
+ # compute the previous noisy sample x_t -> x_t-1
120
+ # latents = scheduler.step(noise_pred, i, latents)["prev_sample"] # Diffusers 0.3 and below
121
+
122
+ #latents = torch.tensor(initial_latents, requires_grad=True)
123
+ ### ADDITIONAL GUIDANCE ###
124
+ # Requires grad on the latents
125
+ if color_postprocessing:
126
+ latents = latents.detach().requires_grad_()
127
+
128
+ # Get the predicted x0:
129
+ latents_x0 = latents - sigma * noise_pred
130
+
131
+ # Decode to image space
132
+ denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
133
+ #denoised_images = vae.decode((1 / 0.18215) * latents_x0) / 2 + 0.5 # (0, 1)
134
+
135
+ # Calculate loss
136
+ loss = orange_loss(denoised_images) * loss_scale
137
+ #loss = color_loss(denoised_images,postporcessing_color) * color_loss_scale
138
+ if i%10==0:
139
+ print(i, 'loss:', loss.item())
140
+
141
+ # Get gradient
142
+ cond_grad = -torch.autograd.grad(loss, latents)[0]
143
+
144
+ # Modify the latents based on this gradient
145
+ latents = latents.detach() + cond_grad * sigma**2
146
+
147
+
148
+ ### And saving as before ###
149
+ # Get the predicted x0:
150
+ latents_x0 = latents - sigma * noise_pred
151
+ im_t0 = latents_to_pil(latents_x0)[0]
152
+
153
+ # And the previous noisy sample x_t -> x_t-1
154
+ latents = scheduler.step(noise_pred, t, latents)["prev_sample"]
155
+ im_next = latents_to_pil(latents)[0]
156
+
157
+ # Combine the two images and save for later viewing
158
+ im = Image.new('RGB', (1024, 512))
159
+ im.paste(im_next, (0, 0))
160
+ im.paste(im_t0, (512, 0))
161
+ im.save(f'steps/{i:04}.jpeg')
162
+
163
+ else:
164
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
165
+
166
+
167
+ if noised_image:
168
+ output = generate_distorted_image(latents_to_pil(latents)[0],vae)
169
+ else:
170
+ output = latents_to_pil(latents)[0]
171
+
172
+ return output
173
+ def get_output_embeds(input_embeddings):
174
+ # CLIP's text model uses causal mask, so we prepare it here:
175
+ bsz, seq_len = input_embeddings.shape[:2]
176
+ causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
177
+
178
+ # Getting the output embeddings involves calling the model with passing output_hidden_states=True
179
+ # so that it doesn't just return the pooled final predictions:
180
+ encoder_outputs = text_encoder.text_model.encoder(
181
+ inputs_embeds=input_embeddings,
182
+ attention_mask=None, # We aren't using an attention mask so that can be None
183
+ causal_attention_mask=causal_attention_mask.to(torch_device),
184
+ output_attentions=None,
185
+ output_hidden_states=True, # We want the output embs not the final output
186
+ return_dict=None,
187
+ )
188
+
189
+ # We're interested in the output hidden state only
190
+ output = encoder_outputs[0]
191
+
192
+ # There is a final layer norm we need to pass these through
193
+ output = text_encoder.text_model.final_layer_norm(output)
194
+
195
+ # And now they're ready!
196
+ return output