Spaces:
Runtime error
Runtime error
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from base64 import b64encode
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
6 |
+
from huggingface_hub import notebook_login
|
7 |
+
import torch.nn.functional as F
|
8 |
+
# For video display:
|
9 |
+
from IPython.display import HTML
|
10 |
+
from matplotlib import pyplot as plt
|
11 |
+
from pathlib import Path
|
12 |
+
from PIL import Image
|
13 |
+
from torch import autocast
|
14 |
+
from torchvision import transforms as tfms
|
15 |
+
from tqdm.auto import tqdm
|
16 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
17 |
+
import os
|
18 |
+
from device import torch_device,vae,text_encoder,unet,tokenizer,scheduler,token_emb_layer,pos_emb_layer,position_embeddings
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
# Supress some unnecessary warnings when loading the CLIPTextModel
|
23 |
+
logging.set_verbosity_error()
|
24 |
+
|
25 |
+
def pil_to_latent(input_im):
|
26 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
27 |
+
with torch.no_grad():
|
28 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
29 |
+
return 0.18215 * latent.latent_dist.sample()
|
30 |
+
|
31 |
+
|
32 |
+
def latents_to_pil(latents):
|
33 |
+
# batch of latents -> list of images
|
34 |
+
latents = (1 / 0.18215) * latents
|
35 |
+
with torch.no_grad():
|
36 |
+
image = vae.decode(latents).sample
|
37 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
38 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
39 |
+
images = (image * 255).round().astype("uint8")
|
40 |
+
pil_images = [Image.fromarray(image) for image in images]
|
41 |
+
return pil_images
|
42 |
+
|
43 |
+
|
44 |
+
def set_timesteps(scheduler, num_inference_steps):
|
45 |
+
scheduler.set_timesteps(num_inference_steps)
|
46 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
47 |
+
|
48 |
+
|
49 |
+
def orange_loss(image):
|
50 |
+
# Convert the image to a NumPy array
|
51 |
+
#image = image.float() # Convert to a more standard data type (float32)
|
52 |
+
#image_np = image.detach().cpu().numpy() # Use .detach() and .cpu() to ensure compatibility
|
53 |
+
|
54 |
+
# Extract the orange channel (e.g., Red and Green channels)
|
55 |
+
orange_channel = image[:, 0, :, :] + image[:, 1, :, :]
|
56 |
+
|
57 |
+
# Calculate the mean intensity of the orange channel
|
58 |
+
#orange_mean = np.mean(orange_channel)
|
59 |
+
|
60 |
+
# Define the target mean intensity you desire
|
61 |
+
target_mean = 0.8 # Replace with your desired mean intensity
|
62 |
+
|
63 |
+
# Calculate the loss based on the squared difference from the target
|
64 |
+
loss = torch.abs(orange_channel- target_mean).mean()
|
65 |
+
|
66 |
+
# Convert the loss to a PyTorch tensor
|
67 |
+
#loss = torch.tensor(loss, dtype=image.dtype)
|
68 |
+
|
69 |
+
return loss
|