GlandVergil's picture
Upload 23 files
a507bdb verified
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
# SPDX-License-Identifier: MIT
from functools import lru_cache
from typing import Dict, List
import e3nn.o3 as o3
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.cuda.nvtx import range as nvtx_range
from se3_transformer.runtime.utils import degree_to_dim
@lru_cache(maxsize=None)
def get_clebsch_gordon(J: int, d_in: int, d_out: int, device) -> Tensor:
""" Get the (cached) Q^{d_out,d_in}_J matrices from equation (8) """
return o3.wigner_3j(J, d_in, d_out, dtype=torch.float64, device=device).permute(2, 1, 0)
@lru_cache(maxsize=None)
def get_all_clebsch_gordon(max_degree: int, device) -> List[List[Tensor]]:
all_cb = []
for d_in in range(max_degree + 1):
for d_out in range(max_degree + 1):
K_Js = []
for J in range(abs(d_in - d_out), d_in + d_out + 1):
K_Js.append(get_clebsch_gordon(J, d_in, d_out, device))
all_cb.append(K_Js)
return all_cb
def get_spherical_harmonics(relative_pos: Tensor, max_degree: int) -> List[Tensor]:
all_degrees = list(range(2 * max_degree + 1))
with nvtx_range('spherical harmonics'):
sh = o3.spherical_harmonics(all_degrees, relative_pos, normalize=True)
return torch.split(sh, [degree_to_dim(d) for d in all_degrees], dim=1)
@torch.jit.script
def get_basis_script(max_degree: int,
use_pad_trick: bool,
spherical_harmonics: List[Tensor],
clebsch_gordon: List[List[Tensor]],
amp: bool) -> Dict[str, Tensor]:
"""
Compute pairwise bases matrices for degrees up to max_degree
:param max_degree: Maximum input or output degree
:param use_pad_trick: Pad some of the odd dimensions for a better use of Tensor Cores
:param spherical_harmonics: List of computed spherical harmonics
:param clebsch_gordon: List of computed CB-coefficients
:param amp: When true, return bases in FP16 precision
"""
basis = {}
idx = 0
# Double for loop instead of product() because of JIT script
for d_in in range(max_degree + 1):
for d_out in range(max_degree + 1):
key = f'{d_in},{d_out}'
K_Js = []
for freq_idx, J in enumerate(range(abs(d_in - d_out), d_in + d_out + 1)):
Q_J = clebsch_gordon[idx][freq_idx]
K_Js.append(torch.einsum('n f, k l f -> n l k', spherical_harmonics[J].float(), Q_J.float()))
basis[key] = torch.stack(K_Js, 2) # Stack on second dim so order is n l f k
if amp:
basis[key] = basis[key].half()
if use_pad_trick:
basis[key] = F.pad(basis[key], (0, 1)) # Pad the k dimension, that can be sliced later
idx += 1
return basis
@torch.jit.script
def update_basis_with_fused(basis: Dict[str, Tensor],
max_degree: int,
use_pad_trick: bool,
fully_fused: bool) -> Dict[str, Tensor]:
""" Update the basis dict with partially and optionally fully fused bases """
num_edges = basis['0,0'].shape[0]
device = basis['0,0'].device
dtype = basis['0,0'].dtype
sum_dim = sum([degree_to_dim(d) for d in range(max_degree + 1)])
# Fused per output degree
for d_out in range(max_degree + 1):
sum_freq = sum([degree_to_dim(min(d, d_out)) for d in range(max_degree + 1)])
basis_fused = torch.zeros(num_edges, sum_dim, sum_freq, degree_to_dim(d_out) + int(use_pad_trick),
device=device, dtype=dtype)
acc_d, acc_f = 0, 0
for d_in in range(max_degree + 1):
basis_fused[:, acc_d:acc_d + degree_to_dim(d_in), acc_f:acc_f + degree_to_dim(min(d_out, d_in)),
:degree_to_dim(d_out)] = basis[f'{d_in},{d_out}'][:, :, :, :degree_to_dim(d_out)]
acc_d += degree_to_dim(d_in)
acc_f += degree_to_dim(min(d_out, d_in))
basis[f'out{d_out}_fused'] = basis_fused
# Fused per input degree
for d_in in range(max_degree + 1):
sum_freq = sum([degree_to_dim(min(d, d_in)) for d in range(max_degree + 1)])
basis_fused = torch.zeros(num_edges, degree_to_dim(d_in), sum_freq, sum_dim,
device=device, dtype=dtype)
acc_d, acc_f = 0, 0
for d_out in range(max_degree + 1):
basis_fused[:, :, acc_f:acc_f + degree_to_dim(min(d_out, d_in)), acc_d:acc_d + degree_to_dim(d_out)] \
= basis[f'{d_in},{d_out}'][:, :, :, :degree_to_dim(d_out)]
acc_d += degree_to_dim(d_out)
acc_f += degree_to_dim(min(d_out, d_in))
basis[f'in{d_in}_fused'] = basis_fused
if fully_fused:
# Fully fused
# Double sum this way because of JIT script
sum_freq = sum([
sum([degree_to_dim(min(d_in, d_out)) for d_in in range(max_degree + 1)]) for d_out in range(max_degree + 1)
])
basis_fused = torch.zeros(num_edges, sum_dim, sum_freq, sum_dim, device=device, dtype=dtype)
acc_d, acc_f = 0, 0
for d_out in range(max_degree + 1):
b = basis[f'out{d_out}_fused']
basis_fused[:, :, acc_f:acc_f + b.shape[2], acc_d:acc_d + degree_to_dim(d_out)] = b[:, :, :,
:degree_to_dim(d_out)]
acc_f += b.shape[2]
acc_d += degree_to_dim(d_out)
basis['fully_fused'] = basis_fused
del basis['0,0'] # We know that the basis for l = k = 0 is filled with a constant
return basis
def get_basis(relative_pos: Tensor,
max_degree: int = 4,
compute_gradients: bool = False,
use_pad_trick: bool = False,
amp: bool = False) -> Dict[str, Tensor]:
with nvtx_range('spherical harmonics'):
spherical_harmonics = get_spherical_harmonics(relative_pos, max_degree)
with nvtx_range('CB coefficients'):
clebsch_gordon = get_all_clebsch_gordon(max_degree, relative_pos.device)
with torch.autograd.set_grad_enabled(compute_gradients):
with nvtx_range('bases'):
basis = get_basis_script(max_degree=max_degree,
use_pad_trick=use_pad_trick,
spherical_harmonics=spherical_harmonics,
clebsch_gordon=clebsch_gordon,
amp=amp)
return basis