phi4training / run_transformers_training.py
George-API's picture
Upload folder using huggingface_hub
adb15f9 verified
raw
history blame
43.4 kB
#!/usr/bin/env python
# coding=utf-8
import os
import sys
import json
import argparse
import logging
from datetime import datetime
import time
# Import Unsloth first, before other ML imports
try:
from unsloth import FastLanguageModel
from unsloth.chat_templates import get_chat_template
unsloth_available = True
except ImportError:
unsloth_available = False
logger = logging.getLogger(__name__)
logger.warning("Unsloth not available. Please install with: pip install unsloth")
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
TrainerCallback,
set_seed,
BitsAndBytesConfig
)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
# Set other loggers to WARNING to reduce noise and ensure our logs are visible
logging.getLogger("transformers").setLevel(logging.WARNING)
logging.getLogger("datasets").setLevel(logging.WARNING)
logging.getLogger("accelerate").setLevel(logging.WARNING)
logging.getLogger("torch").setLevel(logging.WARNING)
logging.getLogger("bitsandbytes").setLevel(logging.WARNING)
# Define a clean logging function for HF Space compatibility
def log_info(message):
"""Log information in a format compatible with Hugging Face Spaces"""
# Just use the logger, but ensure consistent formatting
logger.info(message)
# Also ensure output is flushed immediately for streaming
sys.stdout.flush()
# Check for BitsAndBytes
try:
from transformers import BitsAndBytesConfig
bitsandbytes_available = True
except ImportError:
bitsandbytes_available = False
logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.")
# Check for PEFT
try:
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
peft_available = True
except ImportError:
peft_available = False
logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.")
def load_env_variables():
"""Load environment variables from system, .env file, or Hugging Face Space variables."""
# Check if we're running in a Hugging Face Space
if os.environ.get("SPACE_ID"):
logging.info("Running in Hugging Face Space")
# Log the presence of variables (without revealing values)
logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}")
logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}")
# If username is not set, try to extract from SPACE_ID
if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""):
username = os.environ.get("SPACE_ID").split("/")[0]
os.environ["HF_USERNAME"] = username
logging.info(f"Set HF_USERNAME from SPACE_ID: {username}")
else:
# Try to load from .env file if not in a Space
try:
from dotenv import load_dotenv
# Updated path to .env file in the new directory structure
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env")
if os.path.exists(env_path):
load_dotenv(env_path)
logging.info(f"Loaded environment variables from {env_path}")
logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}")
logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}")
logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}")
else:
logging.warning(f"No .env file found at {env_path}")
except ImportError:
logging.warning("python-dotenv not installed, not loading from .env file")
if not os.environ.get("HF_USERNAME"):
logger.warning("HF_USERNAME is not set. Using default username.")
if not os.environ.get("HF_SPACE_NAME"):
logger.warning("HF_SPACE_NAME is not set. Using default space name.")
# Set HF_TOKEN for huggingface_hub
if os.environ.get("HF_TOKEN"):
os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN")
def load_configs(base_path):
"""Load all configuration files."""
configs = {}
# List of config files to load
config_files = [
"transformers_config.json",
"hardware_config.json",
"dataset_config.json"
]
for config_file in config_files:
file_path = os.path.join(base_path, config_file)
try:
with open(file_path, "r") as f:
config_name = config_file.replace("_config.json", "")
configs[config_name] = json.load(f)
logger.info(f"Loaded {config_name} configuration from {file_path}")
except Exception as e:
logger.error(f"Error loading {config_file}: {e}")
raise
return configs
def parse_args():
parser = argparse.ArgumentParser(description="Fine-tune a language model on a text dataset")
parser.add_argument("--config_dir", type=str, default=".", help="Directory containing configuration files")
return parser.parse_args()
def load_model_and_tokenizer(config):
"""Load model and tokenizer with proper error handling and optimizations."""
try:
if not unsloth_available:
logger.error("Unsloth is required for training with pre-quantized model")
logger.error("Please ensure unsloth is in requirements.txt")
raise ImportError("Unsloth is required for this training setup")
# Get model name correctly from nested config structure
model_name = config.get("model", {}).get("name") or config.get("model_name_or_path") or config.get("model_name")
logger.info(f"Loading model: {model_name}")
if not model_name:
raise ValueError("Model name not found in configuration. Please check your transformers_config.json file.")
logger.info("Using Unsloth optimizations with pre-quantized model")
# Check for flash attention without importing it directly
use_flash_attention = config.get("use_flash_attention", True)
try:
import flash_attn
logger.info("Flash attention detected and will be used")
except ImportError:
use_flash_attention = False
logger.warning("Flash attention not available, falling back to standard attention")
# First detect if we have a GPU
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
logger.info(f"CUDA available, found {gpu_count} GPU(s)")
# Log GPU info
for i in range(gpu_count):
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
logger.info(f"Memory: {torch.cuda.get_device_properties(i).total_memory / 1024**3:.2f} GB")
# Create an optimized device map for better balance
if gpu_count > 1:
logger.info(f"Creating balanced device map for {gpu_count} GPUs")
# Use auto mapping but with memory tracking
device_map = "auto"
# Set max memory for better balancing
max_memory = {i: f"{int(torch.cuda.get_device_properties(i).total_memory * 0.85 / 1024**3)}GiB" for i in range(gpu_count)}
logger.info(f"Max memory settings: {max_memory}")
else:
device_map = "auto"
max_memory = None
else:
logger.warning("No CUDA available, falling back to CPU")
device_map = {"": "cpu"} # Force CPU placement
max_memory = None
# Set default dtype for better numerics
if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8:
# Use bfloat16 for Ampere or newer
dtype = torch.bfloat16
logger.info("Using bfloat16 precision (Ampere+ GPU)")
elif torch.cuda.is_available():
# Use float16 for older GPUs
dtype = torch.float16
logger.info("Using float16 precision (pre-Ampere GPU)")
else:
# CPU, use default dtype
dtype = None
logger.info("Using default precision (CPU)")
# Load model with proper error handling for out-of-memory
try:
# Improved memory settings for multi-GPU setup
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=config.get("max_seq_length", 2048) or config.get("tokenizer", {}).get("max_seq_length", 2048),
dtype=dtype,
device_map=device_map,
max_memory=max_memory,
# Don't explicitly use flash attention config here, let Unsloth handle it
)
except RuntimeError as e:
if "CUDA out of memory" in str(e):
logger.error("Out of GPU memory. Consider using a smaller batch size or gradient accumulation steps.")
raise
else:
# Try again with CPU placement to see if it's a memory issue
logger.warning(f"Error loading model on default device: {str(e)}")
logger.warning("Attempting to load with device_map='cpu' and no specific dtype")
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=config.get("max_seq_length", 2048) or config.get("tokenizer", {}).get("max_seq_length", 2048),
dtype=None,
device_map={"": "cpu"},
)
logger.warning("Model loaded on CPU. Training will be very slow.")
# Ensure model and optimizer init is on the same device
logger.info(f"Model device map: {model.hf_device_map if hasattr(model, 'hf_device_map') else 'Not available'}")
# Apply Unsloth's training optimizations with config parameters
unsloth_config = config.get("unsloth", {})
model = FastLanguageModel.get_peft_model(
model,
r=unsloth_config.get("r", 32),
target_modules=unsloth_config.get("target_modules",
["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]),
lora_alpha=unsloth_config.get("alpha", 16),
lora_dropout=unsloth_config.get("dropout", 0.05),
bias="none",
use_gradient_checkpointing=config.get("gradient_checkpointing", True) or config.get("training", {}).get("gradient_checkpointing", True),
random_state=config.get("seed", 42),
)
logger.info("Unsloth optimizations applied successfully")
# Set up tokenizer settings
chat_template = config.get("chat_template") or config.get("tokenizer", {}).get("chat_template")
if chat_template:
try:
template = get_chat_template("phi")
tokenizer.chat_template = template
logger.info("Set phi chat template")
except Exception as e:
logger.warning(f"Failed to set chat template: {str(e)}")
# Ensure proper token settings
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.info(f"Set pad_token_id to eos_token_id: {tokenizer.pad_token_id}")
return model, tokenizer
except Exception as e:
logger.error(f"Error in model/tokenizer loading: {str(e)}")
logger.error("If missing dependencies, check the requirements.txt file")
raise
def load_dataset_with_mapping(dataset_config):
"""Load and prepare dataset with proper column mapping."""
try:
# Load dataset
dataset_name = dataset_config.get("dataset", {}).get("name", "")
dataset_split = dataset_config.get("dataset", {}).get("split", "train")
if not dataset_name:
raise ValueError("Dataset name not provided in configuration")
logger.info(f"Loading dataset {dataset_name}, split {dataset_split}")
dataset = load_dataset(dataset_name, split=dataset_split)
# Map columns if specified - with checks to avoid conflicts
column_mapping = dataset_config.get("dataset", {}).get("column_mapping", {})
if column_mapping:
logger.info(f"Checking column mapping: {column_mapping}")
# Only apply mappings for columns that need renaming and don't already exist
safe_mappings = {}
for target, source in column_mapping.items():
if source in dataset.column_names:
# Skip if target already exists and is not the same as source
if target in dataset.column_names and target != source:
logger.warning(f"Cannot rename '{source}' to '{target}' - target column already exists")
else:
safe_mappings[source] = target
# Apply safe renames
if safe_mappings:
logger.info(f"Applying safe column mapping: {safe_mappings}")
for source, target in safe_mappings.items():
if source != target: # Only rename if names are different
dataset = dataset.rename_column(source, target)
# Verify expected columns exist
expected_columns = {"id", "conversations"}
for col in expected_columns:
if col not in dataset.column_names:
# If "conversations" is missing but "text" exists, it might need conversion
if col == "conversations" and "text" in dataset.column_names:
logger.info("Converting 'text' field to 'conversations' format")
def convert_text_to_conversations(example):
# Check if text is already a list of conversation turns
if isinstance(example.get("text"), list):
return {"conversations": example["text"]}
# Otherwise, create a simple conversation with the text as user message
else:
return {
"conversations": [
{"role": "user", "content": str(example.get("text", ""))}
]
}
dataset = dataset.map(convert_text_to_conversations)
else:
logger.warning(f"Expected column '{col}' not found in dataset")
# Note: Explicitly NOT sorting the dataset to preserve original order
logger.info("Preserving original dataset order (no sorting)")
# Log examples without printing full content
if "conversations" in dataset.column_names:
sample_ids = [example['id'] for example in dataset.select(range(min(5, len(dataset))))]
logger.info(f"First few IDs: {sample_ids}")
# Log conversation structure without full content
if len(dataset) > 0:
sample_conv_structure = []
for msg in dataset["conversations"][0]:
if isinstance(msg, dict):
content = msg.get('content', '')
preview = content[:50] + "..." if len(content) > 50 else content
sample_conv_structure.append({
"role": msg.get('role', ''),
"content_length": len(content),
"preview": preview
})
logger.info(f"Conversation structure: {sample_conv_structure}")
logger.info(f"Dataset loaded successfully with {len(dataset)} examples")
logger.info(f"Dataset columns: {dataset.column_names}")
return dataset
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
raise
def format_phi_chat(messages, dataset_config):
"""Format messages according to phi-4's chat template and dataset config."""
formatted_chat = ""
# Get role templates from config
roles = dataset_config.get("data_formatting", {}).get("roles", {
"system": "System: {content}\n\n",
"human": "Human: {content}\n\n",
"user": "Human: {content}\n\n",
"assistant": "Assistant: {content}\n\n"
})
# Handle research introduction metadata first
metadata = next((msg for msg in messages if isinstance(msg, dict) and
"[RESEARCH INTRODUCTION]" in msg.get("content", "")), None)
if metadata:
system_template = roles.get("system", "System: {content}\n\n")
formatted_chat = system_template.format(content=metadata['content'])
messages = [msg for msg in messages if msg != metadata]
# Process remaining messages
for message in messages:
if not isinstance(message, dict) or "content" not in message:
logger.warning(f"Skipping invalid message format: {message}")
continue
role = message.get("role", "").lower()
content = message.get("content", "")
# Format based on role
if role == "human" or role == "user":
template = roles.get("user", roles.get("human", "Human: {content}\n\n"))
formatted_chat += template.format(content=content)
elif role == "assistant" or role == "bot":
template = roles.get("assistant", "Assistant: {content}\n\n")
formatted_chat += template.format(content=content)
elif role == "system":
# For system messages, prepend them
template = roles.get("system", "System: {content}\n\n")
formatted_chat = template.format(content=content) + formatted_chat
else:
# Default to system for unknown roles
logger.warning(f"Unknown role '{role}' - treating as system message")
template = roles.get("system", "System: {content}\n\n")
formatted_chat += template.format(content=content)
return formatted_chat.strip()
class SimpleDataCollator:
def __init__(self, tokenizer, dataset_config):
self.tokenizer = tokenizer
self.dataset_config = dataset_config
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
self.max_seq_length = dataset_config.get("dataset", {}).get("processing", {}).get("max_seq_length", 2048)
logger.info(f"SimpleDataCollator initialized - using pre-audited dataset with max_seq_length={self.max_seq_length}")
logger.info("Using exact dataset structure without reformatting")
# Check if we're on GPU
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"SimpleDataCollator using device: {self.device}")
def __call__(self, features):
"""Process examples preserving exact JSONL structure"""
batch = {"input_ids": [], "attention_mask": [], "labels": []}
for example in features:
try:
# Get ID
paper_id = example.get("id", "")
# Get conversations - these should already contain role and content
conversations = example.get("conversations", [])
if not conversations:
self.stats["skipped"] += 1
continue
# Directly use the conversations array as input to the model's chat template
# This preserves the exact structure with roles and content as they are
try:
# Let tokenizer handle the content with the model's chat template
inputs = self.tokenizer.apply_chat_template(
conversations,
return_tensors=None,
add_generation_prompt=False
)
except Exception as chat_error:
# Fallback if apply_chat_template fails
logger.warning(f"Chat template application failed for example {paper_id}: {str(chat_error)[:100]}")
# Create a basic representation of the conversation
conversation_text = ""
for msg in conversations:
if isinstance(msg, dict) and 'content' in msg:
conversation_text += msg.get('content', '') + "\n\n"
# Basic tokenization
inputs = self.tokenizer(
conversation_text,
add_special_tokens=True,
return_tensors=None
)
# Apply length cap if needed (shouldn't be necessary for pre-audited data)
if self.max_seq_length > 0 and len(inputs) > self.max_seq_length:
logger.warning(f"Example {paper_id} exceeds max_seq_length ({len(inputs)} > {self.max_seq_length})")
inputs = inputs[:self.max_seq_length]
# Create attention mask (1 for all tokens)
attention_mask = [1] * len(inputs)
if len(inputs) > 0:
# For causal language modeling, labels are the same as inputs
labels = inputs.copy()
batch["input_ids"].append(inputs)
batch["attention_mask"].append(attention_mask)
batch["labels"].append(labels)
self.stats["processed"] += 1
self.stats["total_tokens"] += len(inputs)
# Debug logging for first few examples
log_samples = self.dataset_config.get("validation", {}).get("log_samples", 3)
if self.stats["processed"] <= log_samples:
logger.info(f"Example {self.stats['processed']}:")
logger.info(f"Paper ID: {paper_id}")
logger.info(f"Token count: {len(inputs)}")
logger.info(f"Conversation entries: {len(conversations)}")
else:
self.stats["skipped"] += 1
except Exception as e:
logger.warning(f"Error processing example: {str(e)[:100]}...")
logger.warning(f"Problematic example ID: {example.get('id', 'unknown')}")
self.stats["skipped"] += 1
continue
if not batch["input_ids"]:
logger.warning("Empty batch, returning dummy tensors")
return {
"input_ids": torch.zeros((1, 1), dtype=torch.long),
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
"labels": torch.zeros((1, 1), dtype=torch.long)
}
# Pad the batch
max_length = max(len(ids) for ids in batch["input_ids"])
for i in range(len(batch["input_ids"])):
padding_length = max_length - len(batch["input_ids"][i])
if padding_length > 0:
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
batch["attention_mask"][i].extend([0] * padding_length)
batch["labels"][i].extend([-100] * padding_length)
# Convert to tensors
batch = {k: torch.tensor(v, dtype=torch.long) for k, v in batch.items()}
# Log stats periodically
log_interval = self.dataset_config.get("validation", {}).get("log_interval", 100)
if self.stats["processed"] % log_interval == 0 and self.stats["processed"] > 0:
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
f"skipped={self.stats['skipped']}, "
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}")
return batch
class LoggingCallback(TrainerCallback):
def __init__(self):
self.last_log_time = time.time()
self.last_memory_log_time = time.time()
def on_step_end(self, args, state, control, **kwargs):
# Log every 50 steps or every 5 minutes, whichever comes first
current_time = time.time()
# Log loss every 50 steps or 5 minutes
if (state.global_step % 50 == 0) or (current_time - self.last_log_time > 300):
if state.log_history:
loss = state.log_history[-1].get('loss', 'N/A')
# Use simple formatting for better HF Space log compatibility
log_info(f"Step {state.global_step}: Loss {loss}")
else:
log_info(f"Step {state.global_step}: No loss data available")
self.last_log_time = current_time
# Log memory usage every 15 minutes
if current_time - self.last_memory_log_time > 900: # 15 minutes
if torch.cuda.is_available():
memory_info = []
for i in range(torch.cuda.device_count()):
allocated = torch.cuda.memory_allocated(i) / 1024**2
reserved = torch.cuda.memory_reserved(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB")
# Log in compact format for better visibility
log_info(f"Memory usage - {', '.join(memory_info)}")
self.last_memory_log_time = current_time
def on_train_begin(self, args, state, control, **kwargs):
log_info("=== Training is starting ===")
# Log important training parameters for visibility
log_info(f"Batch size: {args.per_device_train_batch_size} × {args.gradient_accumulation_steps} steps × {max(1, torch.cuda.device_count())} GPUs")
log_info(f"Learning rate: {args.learning_rate}")
log_info(f"Epochs: {args.num_train_epochs}")
# Log memory information in compact format
if torch.cuda.is_available():
memory_info = []
for i in range(torch.cuda.device_count()):
allocated = torch.cuda.memory_allocated(i) / 1024**2
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)")
log_info(f"Initial memory usage - {', '.join(memory_info)}")
def on_train_end(self, args, state, control, **kwargs):
log_info("=== Training completed ===")
if torch.cuda.is_available():
memory_info = []
for i in range(torch.cuda.device_count()):
allocated = torch.cuda.memory_allocated(i) / 1024**2
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)")
log_info(f"Final memory usage - {', '.join(memory_info)}")
log_info(f"Total steps: {state.global_step}")
log_info(f"Final loss: {state.log_history[-1].get('loss', 'N/A') if state.log_history else 'N/A'}")
def check_dependencies():
"""Check if all required dependencies are installed."""
missing_packages = []
# Critical packages
if not unsloth_available:
missing_packages.append("unsloth>=2024.3")
if not peft_available:
missing_packages.append("peft>=0.9.0")
# Optional packages - don't add to missing list, just log
try:
import flash_attn
logger.info("flash-attn found. Flash attention will be used for faster training.")
except ImportError:
logger.warning("flash-attn not found. Training will work but may be slower.")
# Don't add to missing packages since it's optional and can cause build issues
# If critical packages are missing, exit with instructions
if missing_packages:
logger.error("Critical dependencies missing:")
for pkg in missing_packages:
logger.error(f" - {pkg}")
logger.error("Please ensure the space has these packages in requirements.txt")
return False
return True
def main():
# Set up logging
log_info("Starting Phi-4 fine-tuning process")
# Parse arguments
args = parse_args()
# Check dependencies
if not check_dependencies():
logger.error("Aborting due to missing critical dependencies")
return 1
# Load environment variables
load_env_variables()
# Load all configurations
try:
configs = load_configs(args.config_dir)
# Extract specific configs
if not configs:
logger.error("Failed to load configurations")
return 1
# Verify configurations exist
if "transformers" not in configs:
logger.error("transformers_config.json not found or invalid")
return 1
if "hardware" not in configs:
logger.warning("hardware_config.json not found. Using default hardware configuration.")
if "dataset" not in configs:
logger.error("dataset_config.json not found or invalid")
return 1
# Validate model configuration
model_config = configs["transformers"]
if not model_config.get("model", {}).get("name") and not model_config.get("model_name_or_path") and not model_config.get("model_name"):
logger.error("Model name not specified in configuration")
logger.error("Please ensure 'name' is specified under 'model' in transformers_config.json")
return 1
model_name = model_config.get("model", {}).get("name") or model_config.get("model_name_or_path") or model_config.get("model_name")
log_info(f"Using model: {model_name}")
log_info("All configurations loaded successfully")
# Extract specific configs
model_config = configs["transformers"]
hardware_config = configs.get("hardware", {})
dataset_config = configs["dataset"]
# Apply hardware-specific settings if available
if hardware_config:
training_opts = hardware_config.get("training_optimizations", {})
per_device_batch_size = training_opts.get("per_device_batch_size")
gradient_accumulation = training_opts.get("gradient_accumulation_steps")
if per_device_batch_size and model_config.get("training"):
model_config["training"]["per_device_train_batch_size"] = per_device_batch_size
log_info(f"Applied hardware-specific batch size: {per_device_batch_size}")
if gradient_accumulation and model_config.get("training"):
model_config["training"]["gradient_accumulation_steps"] = gradient_accumulation
log_info(f"Applied hardware-specific gradient accumulation: {gradient_accumulation}")
# Apply memory optimizations
memory_opts = training_opts.get("memory_optimizations", {})
if memory_opts.get("use_gradient_checkpointing") is not None and model_config.get("training"):
model_config["training"]["gradient_checkpointing"] = memory_opts["use_gradient_checkpointing"]
except Exception as e:
logger.error(f"Error loading configurations: {e}")
return 1
# Set random seed for reproducibility
seed = model_config.get("seed", 42)
set_seed(seed)
log_info(f"Set random seed to {seed} for reproducibility")
# Check CUDA and set environment variables for better memory management
if torch.cuda.is_available():
# Empty CUDA cache
torch.cuda.empty_cache()
# Set memory management env vars for better fragmentation handling
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128,expandable_segments:True"
# Log initial memory information in a compact form
gpu_info = []
for i in range(torch.cuda.device_count()):
name = torch.cuda.get_device_name(i)
allocated = torch.cuda.memory_allocated(i) / 1024**3
total = torch.cuda.get_device_properties(i).total_memory / 1024**3
gpu_info.append(f"GPU {i}: {name} ({allocated:.1f}GB/{total:.1f}GB)")
log_info(f"Hardware: {torch.cuda.device_count()} GPUs detected")
log_info(f"GPU details: {', '.join(gpu_info)}")
else:
log_info("No GPU detected, using CPU (training will be very slow)")
try:
log_info("Loading model and tokenizer...")
model, tokenizer = load_model_and_tokenizer(model_config)
log_info("Model and tokenizer loaded successfully")
# Load dataset with proper mapping
try:
log_info(f"Loading dataset from {dataset_config.get('dataset', {}).get('name', '')}")
dataset = load_dataset_with_mapping(dataset_config)
log_info(f"Dataset loaded with {len(dataset)} examples")
except Exception as e:
logger.error(f"Error loading dataset: {e}")
return 1
# Create data collator
data_collator = SimpleDataCollator(tokenizer, dataset_config)
# Verify precision settings - ensure only one of bf16/fp16 is set, with bf16 taking precedence
use_bf16 = model_config.get("bf16", False) or model_config.get("torch_dtype", "") == "bfloat16"
use_fp16 = model_config.get("fp16", False) and not use_bf16 # Only use fp16 if bf16 is not set
log_info(f"Using precision: {'bf16' if use_bf16 else 'fp16' if use_fp16 else 'full precision'}")
# Get per device batch size - temporarily reduce if necessary for multi-GPU setup
per_device_batch_size = model_config.get("training", {}).get("per_device_train_batch_size", 24)
gradient_accumulation_steps = model_config.get("training", {}).get("gradient_accumulation_steps", 2)
# For multi-GPU setup, adjust for better balance
if torch.cuda.device_count() > 1:
log_info(f"Multi-GPU setup with {torch.cuda.device_count()} GPUs")
log_info(f"Training config: {per_device_batch_size} samples/GPU × {gradient_accumulation_steps} accumulation steps")
# Set up FSDP for multi-GPU training if available
fsdp_config = None
if torch.cuda.device_count() > 1:
try:
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
MixedPrecision,
BackwardPrefetch,
ShardingStrategy,
CPUOffload,
)
from torch.distributed.fsdp.wrap import (
transformer_auto_wrap_policy,
enable_wrap,
wrap,
)
log_info("Using FSDP for distributed training")
# Configure FSDP
fsdp_config = {
"fsdp_transformer_layer_cls_to_wrap": ["LlamaDecoderLayer"],
"fsdp_offload_params": False,
"fsdp_backward_prefetch": "BACKWARD_PRE",
"fsdp_min_num_params": 1e6,
"fsdp_sharding_strategy": 1, # FULL_SHARD
}
if use_bf16 or use_fp16:
precision_type = "bf16" if use_bf16 else "fp16"
fsdp_config["fsdp_state_dict_type"] = "FULL_STATE_DICT"
log_info(f"FSDP using mixed precision: {precision_type}")
except ImportError:
log_info("FSDP imports failed, falling back to standard DDP")
fsdp_config = None
# Set up training arguments
log_info("Setting up training arguments")
training_args = TrainingArguments(
output_dir=model_config.get("output_dir", "./results") or model_config.get("checkpointing", {}).get("output_dir", "./results"),
num_train_epochs=model_config.get("training", {}).get("num_train_epochs", 3),
per_device_train_batch_size=per_device_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=model_config.get("training", {}).get("learning_rate", 2e-5),
weight_decay=model_config.get("training", {}).get("weight_decay", 0.01),
warmup_ratio=model_config.get("training", {}).get("warmup_ratio", 0.05),
lr_scheduler_type=model_config.get("training", {}).get("lr_scheduler_type", "cosine"),
logging_steps=model_config.get("training", {}).get("logging_steps", 10),
save_strategy=model_config.get("checkpointing", {}).get("save_strategy", "steps"),
save_steps=model_config.get("checkpointing", {}).get("save_steps", 100),
save_total_limit=model_config.get("checkpointing", {}).get("save_total_limit", 3),
fp16=use_fp16,
bf16=use_bf16,
max_grad_norm=model_config.get("training", {}).get("max_grad_norm", 1.0),
push_to_hub=model_config.get("huggingface_hub", {}).get("push_to_hub", False),
hub_model_id=model_config.get("huggingface_hub", {}).get("hub_model_id", None),
hub_token=os.environ.get("HF_TOKEN", None),
report_to="tensorboard",
remove_unused_columns=False, # Keep all columns
gradient_checkpointing=model_config.get("training", {}).get("gradient_checkpointing", True),
dataloader_pin_memory=True, # Keep data in pinned memory for faster transfer
optim=model_config.get("training", {}).get("optim", "adamw_torch"),
ddp_find_unused_parameters=False, # Improve distributed training efficiency
dataloader_drop_last=False, # Process all examples
dataloader_num_workers=2, # Reduced worker count
no_cuda=False if torch.cuda.is_available() else True, # Use CUDA if available
fsdp=fsdp_config, # Add FSDP configuration if available
)
# Create sequential sampler to maintain original dataset order
sequential_sampler = torch.utils.data.SequentialSampler(dataset)
# Initialize trainer first
log_info("Initializing Trainer")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset, # We'll override this with our custom dataloader
data_collator=data_collator,
callbacks=[LoggingCallback()],
)
# Then override the get_train_dataloader method
def custom_get_train_dataloader():
"""Custom dataloader that preserves original dataset order"""
log_info("Creating sequential dataloader to maintain original dataset order")
# Calculate batch size based on device availability
if getattr(training_args, "no_cuda", False):
batch_size = training_args.per_device_train_batch_size
else:
batch_size = max(training_args.per_device_train_batch_size * max(1, torch.cuda.device_count()), 1)
log_info(f"Using sequential sampler with batch size {batch_size}")
# Return DataLoader with sequential sampler
return torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
sampler=sequential_sampler,
collate_fn=data_collator,
drop_last=training_args.dataloader_drop_last,
num_workers=training_args.dataloader_num_workers,
pin_memory=training_args.dataloader_pin_memory,
)
# Override the get_train_dataloader method
trainer.get_train_dataloader = custom_get_train_dataloader
# Start training
log_info("=== Starting Training ===")
try:
# Empty cache again right before training
if torch.cuda.is_available():
torch.cuda.empty_cache()
log_info("Cleared CUDA cache before training")
# Display compact training info
total_steps = int(len(dataset) / (per_device_batch_size * torch.cuda.device_count() * gradient_accumulation_steps) * training_args.num_train_epochs)
log_info(f"Training plan: {len(dataset)} examples over {training_args.num_train_epochs} epochs ≈ {total_steps} steps")
trainer.train()
log_info("Training completed successfully!")
# Save the final model
log_info("Saving final model...")
trainer.save_model()
log_info(f"Model saved to {training_args.output_dir}")
# Push to hub if enabled
if model_config.get("huggingface_hub", {}).get("push_to_hub", False):
hub_id = model_config.get("huggingface_hub", {}).get("hub_model_id", "model")
log_info(f"Pushing model to Hugging Face Hub as {hub_id}...")
trainer.push_to_hub()
log_info("Model successfully pushed to Hub")
return 0
except Exception as e:
logger.error(f"Training failed with error: {str(e)}")
# Log CUDA memory info if available in compact format
if torch.cuda.is_available():
memory_info = []
for i in range(torch.cuda.device_count()):
allocated = torch.cuda.memory_allocated(i) / 1024**2
reserved = torch.cuda.memory_reserved(i) / 1024**2
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB (max: {max_mem:.1f}MB)")
logger.error(f"GPU memory at failure: {', '.join(memory_info)}")
raise
except Exception as e:
logger.error(f"Error in main training loop: {str(e)}")
return 1
if __name__ == "__main__":
sys.exit(main())