Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding=utf-8 | |
import os | |
import sys | |
import json | |
import argparse | |
import logging | |
from datetime import datetime | |
import time | |
# Import Unsloth first, before other ML imports | |
try: | |
from unsloth import FastLanguageModel | |
from unsloth.chat_templates import get_chat_template | |
unsloth_available = True | |
except ImportError: | |
unsloth_available = False | |
logger = logging.getLogger(__name__) | |
logger.warning("Unsloth not available. Please install with: pip install unsloth") | |
import torch | |
from datasets import load_dataset | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TrainingArguments, | |
Trainer, | |
TrainerCallback, | |
set_seed, | |
BitsAndBytesConfig | |
) | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s - %(levelname)s - %(message)s", | |
handlers=[logging.StreamHandler(sys.stdout)] | |
) | |
logger = logging.getLogger(__name__) | |
# Set other loggers to WARNING to reduce noise and ensure our logs are visible | |
logging.getLogger("transformers").setLevel(logging.WARNING) | |
logging.getLogger("datasets").setLevel(logging.WARNING) | |
logging.getLogger("accelerate").setLevel(logging.WARNING) | |
logging.getLogger("torch").setLevel(logging.WARNING) | |
logging.getLogger("bitsandbytes").setLevel(logging.WARNING) | |
# Define a clean logging function for HF Space compatibility | |
def log_info(message): | |
"""Log information in a format compatible with Hugging Face Spaces""" | |
# Just use the logger, but ensure consistent formatting | |
logger.info(message) | |
# Also ensure output is flushed immediately for streaming | |
sys.stdout.flush() | |
# Check for BitsAndBytes | |
try: | |
from transformers import BitsAndBytesConfig | |
bitsandbytes_available = True | |
except ImportError: | |
bitsandbytes_available = False | |
logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.") | |
# Check for PEFT | |
try: | |
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training | |
peft_available = True | |
except ImportError: | |
peft_available = False | |
logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.") | |
def load_env_variables(): | |
"""Load environment variables from system, .env file, or Hugging Face Space variables.""" | |
# Check if we're running in a Hugging Face Space | |
if os.environ.get("SPACE_ID"): | |
logging.info("Running in Hugging Face Space") | |
# Log the presence of variables (without revealing values) | |
logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}") | |
logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}") | |
# If username is not set, try to extract from SPACE_ID | |
if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""): | |
username = os.environ.get("SPACE_ID").split("/")[0] | |
os.environ["HF_USERNAME"] = username | |
logging.info(f"Set HF_USERNAME from SPACE_ID: {username}") | |
else: | |
# Try to load from .env file if not in a Space | |
try: | |
from dotenv import load_dotenv | |
# Updated path to .env file in the new directory structure | |
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env") | |
if os.path.exists(env_path): | |
load_dotenv(env_path) | |
logging.info(f"Loaded environment variables from {env_path}") | |
logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}") | |
logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}") | |
logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}") | |
else: | |
logging.warning(f"No .env file found at {env_path}") | |
except ImportError: | |
logging.warning("python-dotenv not installed, not loading from .env file") | |
if not os.environ.get("HF_USERNAME"): | |
logger.warning("HF_USERNAME is not set. Using default username.") | |
if not os.environ.get("HF_SPACE_NAME"): | |
logger.warning("HF_SPACE_NAME is not set. Using default space name.") | |
# Set HF_TOKEN for huggingface_hub | |
if os.environ.get("HF_TOKEN"): | |
os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN") | |
def load_configs(base_path): | |
"""Load all configuration files.""" | |
configs = {} | |
# List of config files to load | |
config_files = [ | |
"transformers_config.json", | |
"hardware_config.json", | |
"dataset_config.json" | |
] | |
for config_file in config_files: | |
file_path = os.path.join(base_path, config_file) | |
try: | |
with open(file_path, "r") as f: | |
config_name = config_file.replace("_config.json", "") | |
configs[config_name] = json.load(f) | |
logger.info(f"Loaded {config_name} configuration from {file_path}") | |
except Exception as e: | |
logger.error(f"Error loading {config_file}: {e}") | |
raise | |
return configs | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Fine-tune a language model on a text dataset") | |
parser.add_argument("--config_dir", type=str, default=".", help="Directory containing configuration files") | |
return parser.parse_args() | |
def load_model_and_tokenizer(config): | |
"""Load model and tokenizer with proper error handling and optimizations.""" | |
try: | |
if not unsloth_available: | |
logger.error("Unsloth is required for training with pre-quantized model") | |
logger.error("Please ensure unsloth is in requirements.txt") | |
raise ImportError("Unsloth is required for this training setup") | |
# Get model name correctly from nested config structure | |
model_name = config.get("model", {}).get("name") or config.get("model_name_or_path") or config.get("model_name") | |
logger.info(f"Loading model: {model_name}") | |
if not model_name: | |
raise ValueError("Model name not found in configuration. Please check your transformers_config.json file.") | |
logger.info("Using Unsloth optimizations with pre-quantized model") | |
# Check for flash attention without importing it directly | |
use_flash_attention = config.get("use_flash_attention", True) | |
try: | |
import flash_attn | |
logger.info("Flash attention detected and will be used") | |
except ImportError: | |
use_flash_attention = False | |
logger.warning("Flash attention not available, falling back to standard attention") | |
# First detect if we have a GPU | |
if torch.cuda.is_available(): | |
gpu_count = torch.cuda.device_count() | |
logger.info(f"CUDA available, found {gpu_count} GPU(s)") | |
# Log GPU info | |
for i in range(gpu_count): | |
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}") | |
logger.info(f"Memory: {torch.cuda.get_device_properties(i).total_memory / 1024**3:.2f} GB") | |
# Create an optimized device map for better balance | |
if gpu_count > 1: | |
logger.info(f"Creating balanced device map for {gpu_count} GPUs") | |
# Use auto mapping but with memory tracking | |
device_map = "auto" | |
# Set max memory for better balancing | |
max_memory = {i: f"{int(torch.cuda.get_device_properties(i).total_memory * 0.85 / 1024**3)}GiB" for i in range(gpu_count)} | |
logger.info(f"Max memory settings: {max_memory}") | |
else: | |
device_map = "auto" | |
max_memory = None | |
else: | |
logger.warning("No CUDA available, falling back to CPU") | |
device_map = {"": "cpu"} # Force CPU placement | |
max_memory = None | |
# Set default dtype for better numerics | |
if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8: | |
# Use bfloat16 for Ampere or newer | |
dtype = torch.bfloat16 | |
logger.info("Using bfloat16 precision (Ampere+ GPU)") | |
elif torch.cuda.is_available(): | |
# Use float16 for older GPUs | |
dtype = torch.float16 | |
logger.info("Using float16 precision (pre-Ampere GPU)") | |
else: | |
# CPU, use default dtype | |
dtype = None | |
logger.info("Using default precision (CPU)") | |
# Load model with proper error handling for out-of-memory | |
try: | |
# Improved memory settings for multi-GPU setup | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name=model_name, | |
max_seq_length=config.get("max_seq_length", 2048) or config.get("tokenizer", {}).get("max_seq_length", 2048), | |
dtype=dtype, | |
device_map=device_map, | |
max_memory=max_memory, | |
# Don't explicitly use flash attention config here, let Unsloth handle it | |
) | |
except RuntimeError as e: | |
if "CUDA out of memory" in str(e): | |
logger.error("Out of GPU memory. Consider using a smaller batch size or gradient accumulation steps.") | |
raise | |
else: | |
# Try again with CPU placement to see if it's a memory issue | |
logger.warning(f"Error loading model on default device: {str(e)}") | |
logger.warning("Attempting to load with device_map='cpu' and no specific dtype") | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name=model_name, | |
max_seq_length=config.get("max_seq_length", 2048) or config.get("tokenizer", {}).get("max_seq_length", 2048), | |
dtype=None, | |
device_map={"": "cpu"}, | |
) | |
logger.warning("Model loaded on CPU. Training will be very slow.") | |
# Ensure model and optimizer init is on the same device | |
logger.info(f"Model device map: {model.hf_device_map if hasattr(model, 'hf_device_map') else 'Not available'}") | |
# Apply Unsloth's training optimizations with config parameters | |
unsloth_config = config.get("unsloth", {}) | |
model = FastLanguageModel.get_peft_model( | |
model, | |
r=unsloth_config.get("r", 32), | |
target_modules=unsloth_config.get("target_modules", | |
["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]), | |
lora_alpha=unsloth_config.get("alpha", 16), | |
lora_dropout=unsloth_config.get("dropout", 0.05), | |
bias="none", | |
use_gradient_checkpointing=config.get("gradient_checkpointing", True) or config.get("training", {}).get("gradient_checkpointing", True), | |
random_state=config.get("seed", 42), | |
) | |
logger.info("Unsloth optimizations applied successfully") | |
# Set up tokenizer settings | |
chat_template = config.get("chat_template") or config.get("tokenizer", {}).get("chat_template") | |
if chat_template: | |
try: | |
template = get_chat_template("phi") | |
tokenizer.chat_template = template | |
logger.info("Set phi chat template") | |
except Exception as e: | |
logger.warning(f"Failed to set chat template: {str(e)}") | |
# Ensure proper token settings | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
logger.info(f"Set pad_token_id to eos_token_id: {tokenizer.pad_token_id}") | |
return model, tokenizer | |
except Exception as e: | |
logger.error(f"Error in model/tokenizer loading: {str(e)}") | |
logger.error("If missing dependencies, check the requirements.txt file") | |
raise | |
def load_dataset_with_mapping(dataset_config): | |
"""Load and prepare dataset with proper column mapping.""" | |
try: | |
# Load dataset | |
dataset_name = dataset_config.get("dataset", {}).get("name", "") | |
dataset_split = dataset_config.get("dataset", {}).get("split", "train") | |
if not dataset_name: | |
raise ValueError("Dataset name not provided in configuration") | |
logger.info(f"Loading dataset {dataset_name}, split {dataset_split}") | |
dataset = load_dataset(dataset_name, split=dataset_split) | |
# Map columns if specified - with checks to avoid conflicts | |
column_mapping = dataset_config.get("dataset", {}).get("column_mapping", {}) | |
if column_mapping: | |
logger.info(f"Checking column mapping: {column_mapping}") | |
# Only apply mappings for columns that need renaming and don't already exist | |
safe_mappings = {} | |
for target, source in column_mapping.items(): | |
if source in dataset.column_names: | |
# Skip if target already exists and is not the same as source | |
if target in dataset.column_names and target != source: | |
logger.warning(f"Cannot rename '{source}' to '{target}' - target column already exists") | |
else: | |
safe_mappings[source] = target | |
# Apply safe renames | |
if safe_mappings: | |
logger.info(f"Applying safe column mapping: {safe_mappings}") | |
for source, target in safe_mappings.items(): | |
if source != target: # Only rename if names are different | |
dataset = dataset.rename_column(source, target) | |
# Verify expected columns exist | |
expected_columns = {"id", "conversations"} | |
for col in expected_columns: | |
if col not in dataset.column_names: | |
# If "conversations" is missing but "text" exists, it might need conversion | |
if col == "conversations" and "text" in dataset.column_names: | |
logger.info("Converting 'text' field to 'conversations' format") | |
def convert_text_to_conversations(example): | |
# Check if text is already a list of conversation turns | |
if isinstance(example.get("text"), list): | |
return {"conversations": example["text"]} | |
# Otherwise, create a simple conversation with the text as user message | |
else: | |
return { | |
"conversations": [ | |
{"role": "user", "content": str(example.get("text", ""))} | |
] | |
} | |
dataset = dataset.map(convert_text_to_conversations) | |
else: | |
logger.warning(f"Expected column '{col}' not found in dataset") | |
# Note: Explicitly NOT sorting the dataset to preserve original order | |
logger.info("Preserving original dataset order (no sorting)") | |
# Log examples without printing full content | |
if "conversations" in dataset.column_names: | |
sample_ids = [example['id'] for example in dataset.select(range(min(5, len(dataset))))] | |
logger.info(f"First few IDs: {sample_ids}") | |
# Log conversation structure without full content | |
if len(dataset) > 0: | |
sample_conv_structure = [] | |
for msg in dataset["conversations"][0]: | |
if isinstance(msg, dict): | |
content = msg.get('content', '') | |
preview = content[:50] + "..." if len(content) > 50 else content | |
sample_conv_structure.append({ | |
"role": msg.get('role', ''), | |
"content_length": len(content), | |
"preview": preview | |
}) | |
logger.info(f"Conversation structure: {sample_conv_structure}") | |
logger.info(f"Dataset loaded successfully with {len(dataset)} examples") | |
logger.info(f"Dataset columns: {dataset.column_names}") | |
return dataset | |
except Exception as e: | |
logger.error(f"Error loading dataset: {str(e)}") | |
raise | |
def format_phi_chat(messages, dataset_config): | |
"""Format messages according to phi-4's chat template and dataset config.""" | |
formatted_chat = "" | |
# Get role templates from config | |
roles = dataset_config.get("data_formatting", {}).get("roles", { | |
"system": "System: {content}\n\n", | |
"human": "Human: {content}\n\n", | |
"user": "Human: {content}\n\n", | |
"assistant": "Assistant: {content}\n\n" | |
}) | |
# Handle research introduction metadata first | |
metadata = next((msg for msg in messages if isinstance(msg, dict) and | |
"[RESEARCH INTRODUCTION]" in msg.get("content", "")), None) | |
if metadata: | |
system_template = roles.get("system", "System: {content}\n\n") | |
formatted_chat = system_template.format(content=metadata['content']) | |
messages = [msg for msg in messages if msg != metadata] | |
# Process remaining messages | |
for message in messages: | |
if not isinstance(message, dict) or "content" not in message: | |
logger.warning(f"Skipping invalid message format: {message}") | |
continue | |
role = message.get("role", "").lower() | |
content = message.get("content", "") | |
# Format based on role | |
if role == "human" or role == "user": | |
template = roles.get("user", roles.get("human", "Human: {content}\n\n")) | |
formatted_chat += template.format(content=content) | |
elif role == "assistant" or role == "bot": | |
template = roles.get("assistant", "Assistant: {content}\n\n") | |
formatted_chat += template.format(content=content) | |
elif role == "system": | |
# For system messages, prepend them | |
template = roles.get("system", "System: {content}\n\n") | |
formatted_chat = template.format(content=content) + formatted_chat | |
else: | |
# Default to system for unknown roles | |
logger.warning(f"Unknown role '{role}' - treating as system message") | |
template = roles.get("system", "System: {content}\n\n") | |
formatted_chat += template.format(content=content) | |
return formatted_chat.strip() | |
class SimpleDataCollator: | |
def __init__(self, tokenizer, dataset_config): | |
self.tokenizer = tokenizer | |
self.dataset_config = dataset_config | |
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0} | |
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0 | |
self.max_seq_length = dataset_config.get("dataset", {}).get("processing", {}).get("max_seq_length", 2048) | |
logger.info(f"SimpleDataCollator initialized - using pre-audited dataset with max_seq_length={self.max_seq_length}") | |
logger.info("Using exact dataset structure without reformatting") | |
# Check if we're on GPU | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
logger.info(f"SimpleDataCollator using device: {self.device}") | |
def __call__(self, features): | |
"""Process examples preserving exact JSONL structure""" | |
batch = {"input_ids": [], "attention_mask": [], "labels": []} | |
for example in features: | |
try: | |
# Get ID | |
paper_id = example.get("id", "") | |
# Get conversations - these should already contain role and content | |
conversations = example.get("conversations", []) | |
if not conversations: | |
self.stats["skipped"] += 1 | |
continue | |
# Directly use the conversations array as input to the model's chat template | |
# This preserves the exact structure with roles and content as they are | |
try: | |
# Let tokenizer handle the content with the model's chat template | |
inputs = self.tokenizer.apply_chat_template( | |
conversations, | |
return_tensors=None, | |
add_generation_prompt=False | |
) | |
except Exception as chat_error: | |
# Fallback if apply_chat_template fails | |
logger.warning(f"Chat template application failed for example {paper_id}: {str(chat_error)[:100]}") | |
# Create a basic representation of the conversation | |
conversation_text = "" | |
for msg in conversations: | |
if isinstance(msg, dict) and 'content' in msg: | |
conversation_text += msg.get('content', '') + "\n\n" | |
# Basic tokenization | |
inputs = self.tokenizer( | |
conversation_text, | |
add_special_tokens=True, | |
return_tensors=None | |
) | |
# Apply length cap if needed (shouldn't be necessary for pre-audited data) | |
if self.max_seq_length > 0 and len(inputs) > self.max_seq_length: | |
logger.warning(f"Example {paper_id} exceeds max_seq_length ({len(inputs)} > {self.max_seq_length})") | |
inputs = inputs[:self.max_seq_length] | |
# Create attention mask (1 for all tokens) | |
attention_mask = [1] * len(inputs) | |
if len(inputs) > 0: | |
# For causal language modeling, labels are the same as inputs | |
labels = inputs.copy() | |
batch["input_ids"].append(inputs) | |
batch["attention_mask"].append(attention_mask) | |
batch["labels"].append(labels) | |
self.stats["processed"] += 1 | |
self.stats["total_tokens"] += len(inputs) | |
# Debug logging for first few examples | |
log_samples = self.dataset_config.get("validation", {}).get("log_samples", 3) | |
if self.stats["processed"] <= log_samples: | |
logger.info(f"Example {self.stats['processed']}:") | |
logger.info(f"Paper ID: {paper_id}") | |
logger.info(f"Token count: {len(inputs)}") | |
logger.info(f"Conversation entries: {len(conversations)}") | |
else: | |
self.stats["skipped"] += 1 | |
except Exception as e: | |
logger.warning(f"Error processing example: {str(e)[:100]}...") | |
logger.warning(f"Problematic example ID: {example.get('id', 'unknown')}") | |
self.stats["skipped"] += 1 | |
continue | |
if not batch["input_ids"]: | |
logger.warning("Empty batch, returning dummy tensors") | |
return { | |
"input_ids": torch.zeros((1, 1), dtype=torch.long), | |
"attention_mask": torch.zeros((1, 1), dtype=torch.long), | |
"labels": torch.zeros((1, 1), dtype=torch.long) | |
} | |
# Pad the batch | |
max_length = max(len(ids) for ids in batch["input_ids"]) | |
for i in range(len(batch["input_ids"])): | |
padding_length = max_length - len(batch["input_ids"][i]) | |
if padding_length > 0: | |
batch["input_ids"][i].extend([self.pad_token_id] * padding_length) | |
batch["attention_mask"][i].extend([0] * padding_length) | |
batch["labels"][i].extend([-100] * padding_length) | |
# Convert to tensors | |
batch = {k: torch.tensor(v, dtype=torch.long) for k, v in batch.items()} | |
# Log stats periodically | |
log_interval = self.dataset_config.get("validation", {}).get("log_interval", 100) | |
if self.stats["processed"] % log_interval == 0 and self.stats["processed"] > 0: | |
logger.info(f"Data collator stats: processed={self.stats['processed']}, " | |
f"skipped={self.stats['skipped']}, " | |
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}") | |
return batch | |
class LoggingCallback(TrainerCallback): | |
def __init__(self): | |
self.last_log_time = time.time() | |
self.last_memory_log_time = time.time() | |
def on_step_end(self, args, state, control, **kwargs): | |
# Log every 50 steps or every 5 minutes, whichever comes first | |
current_time = time.time() | |
# Log loss every 50 steps or 5 minutes | |
if (state.global_step % 50 == 0) or (current_time - self.last_log_time > 300): | |
if state.log_history: | |
loss = state.log_history[-1].get('loss', 'N/A') | |
# Use simple formatting for better HF Space log compatibility | |
log_info(f"Step {state.global_step}: Loss {loss}") | |
else: | |
log_info(f"Step {state.global_step}: No loss data available") | |
self.last_log_time = current_time | |
# Log memory usage every 15 minutes | |
if current_time - self.last_memory_log_time > 900: # 15 minutes | |
if torch.cuda.is_available(): | |
memory_info = [] | |
for i in range(torch.cuda.device_count()): | |
allocated = torch.cuda.memory_allocated(i) / 1024**2 | |
reserved = torch.cuda.memory_reserved(i) / 1024**2 | |
memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB") | |
# Log in compact format for better visibility | |
log_info(f"Memory usage - {', '.join(memory_info)}") | |
self.last_memory_log_time = current_time | |
def on_train_begin(self, args, state, control, **kwargs): | |
log_info("=== Training is starting ===") | |
# Log important training parameters for visibility | |
log_info(f"Batch size: {args.per_device_train_batch_size} × {args.gradient_accumulation_steps} steps × {max(1, torch.cuda.device_count())} GPUs") | |
log_info(f"Learning rate: {args.learning_rate}") | |
log_info(f"Epochs: {args.num_train_epochs}") | |
# Log memory information in compact format | |
if torch.cuda.is_available(): | |
memory_info = [] | |
for i in range(torch.cuda.device_count()): | |
allocated = torch.cuda.memory_allocated(i) / 1024**2 | |
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2 | |
memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)") | |
log_info(f"Initial memory usage - {', '.join(memory_info)}") | |
def on_train_end(self, args, state, control, **kwargs): | |
log_info("=== Training completed ===") | |
if torch.cuda.is_available(): | |
memory_info = [] | |
for i in range(torch.cuda.device_count()): | |
allocated = torch.cuda.memory_allocated(i) / 1024**2 | |
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2 | |
memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)") | |
log_info(f"Final memory usage - {', '.join(memory_info)}") | |
log_info(f"Total steps: {state.global_step}") | |
log_info(f"Final loss: {state.log_history[-1].get('loss', 'N/A') if state.log_history else 'N/A'}") | |
def check_dependencies(): | |
"""Check if all required dependencies are installed.""" | |
missing_packages = [] | |
# Critical packages | |
if not unsloth_available: | |
missing_packages.append("unsloth>=2024.3") | |
if not peft_available: | |
missing_packages.append("peft>=0.9.0") | |
# Optional packages - don't add to missing list, just log | |
try: | |
import flash_attn | |
logger.info("flash-attn found. Flash attention will be used for faster training.") | |
except ImportError: | |
logger.warning("flash-attn not found. Training will work but may be slower.") | |
# Don't add to missing packages since it's optional and can cause build issues | |
# If critical packages are missing, exit with instructions | |
if missing_packages: | |
logger.error("Critical dependencies missing:") | |
for pkg in missing_packages: | |
logger.error(f" - {pkg}") | |
logger.error("Please ensure the space has these packages in requirements.txt") | |
return False | |
return True | |
def main(): | |
# Set up logging | |
log_info("Starting Phi-4 fine-tuning process") | |
# Parse arguments | |
args = parse_args() | |
# Check dependencies | |
if not check_dependencies(): | |
logger.error("Aborting due to missing critical dependencies") | |
return 1 | |
# Load environment variables | |
load_env_variables() | |
# Load all configurations | |
try: | |
configs = load_configs(args.config_dir) | |
# Extract specific configs | |
if not configs: | |
logger.error("Failed to load configurations") | |
return 1 | |
# Verify configurations exist | |
if "transformers" not in configs: | |
logger.error("transformers_config.json not found or invalid") | |
return 1 | |
if "hardware" not in configs: | |
logger.warning("hardware_config.json not found. Using default hardware configuration.") | |
if "dataset" not in configs: | |
logger.error("dataset_config.json not found or invalid") | |
return 1 | |
# Validate model configuration | |
model_config = configs["transformers"] | |
if not model_config.get("model", {}).get("name") and not model_config.get("model_name_or_path") and not model_config.get("model_name"): | |
logger.error("Model name not specified in configuration") | |
logger.error("Please ensure 'name' is specified under 'model' in transformers_config.json") | |
return 1 | |
model_name = model_config.get("model", {}).get("name") or model_config.get("model_name_or_path") or model_config.get("model_name") | |
log_info(f"Using model: {model_name}") | |
log_info("All configurations loaded successfully") | |
# Extract specific configs | |
model_config = configs["transformers"] | |
hardware_config = configs.get("hardware", {}) | |
dataset_config = configs["dataset"] | |
# Apply hardware-specific settings if available | |
if hardware_config: | |
training_opts = hardware_config.get("training_optimizations", {}) | |
per_device_batch_size = training_opts.get("per_device_batch_size") | |
gradient_accumulation = training_opts.get("gradient_accumulation_steps") | |
if per_device_batch_size and model_config.get("training"): | |
model_config["training"]["per_device_train_batch_size"] = per_device_batch_size | |
log_info(f"Applied hardware-specific batch size: {per_device_batch_size}") | |
if gradient_accumulation and model_config.get("training"): | |
model_config["training"]["gradient_accumulation_steps"] = gradient_accumulation | |
log_info(f"Applied hardware-specific gradient accumulation: {gradient_accumulation}") | |
# Apply memory optimizations | |
memory_opts = training_opts.get("memory_optimizations", {}) | |
if memory_opts.get("use_gradient_checkpointing") is not None and model_config.get("training"): | |
model_config["training"]["gradient_checkpointing"] = memory_opts["use_gradient_checkpointing"] | |
except Exception as e: | |
logger.error(f"Error loading configurations: {e}") | |
return 1 | |
# Set random seed for reproducibility | |
seed = model_config.get("seed", 42) | |
set_seed(seed) | |
log_info(f"Set random seed to {seed} for reproducibility") | |
# Check CUDA and set environment variables for better memory management | |
if torch.cuda.is_available(): | |
# Empty CUDA cache | |
torch.cuda.empty_cache() | |
# Set memory management env vars for better fragmentation handling | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128,expandable_segments:True" | |
# Log initial memory information in a compact form | |
gpu_info = [] | |
for i in range(torch.cuda.device_count()): | |
name = torch.cuda.get_device_name(i) | |
allocated = torch.cuda.memory_allocated(i) / 1024**3 | |
total = torch.cuda.get_device_properties(i).total_memory / 1024**3 | |
gpu_info.append(f"GPU {i}: {name} ({allocated:.1f}GB/{total:.1f}GB)") | |
log_info(f"Hardware: {torch.cuda.device_count()} GPUs detected") | |
log_info(f"GPU details: {', '.join(gpu_info)}") | |
else: | |
log_info("No GPU detected, using CPU (training will be very slow)") | |
try: | |
log_info("Loading model and tokenizer...") | |
model, tokenizer = load_model_and_tokenizer(model_config) | |
log_info("Model and tokenizer loaded successfully") | |
# Load dataset with proper mapping | |
try: | |
log_info(f"Loading dataset from {dataset_config.get('dataset', {}).get('name', '')}") | |
dataset = load_dataset_with_mapping(dataset_config) | |
log_info(f"Dataset loaded with {len(dataset)} examples") | |
except Exception as e: | |
logger.error(f"Error loading dataset: {e}") | |
return 1 | |
# Create data collator | |
data_collator = SimpleDataCollator(tokenizer, dataset_config) | |
# Verify precision settings - ensure only one of bf16/fp16 is set, with bf16 taking precedence | |
use_bf16 = model_config.get("bf16", False) or model_config.get("torch_dtype", "") == "bfloat16" | |
use_fp16 = model_config.get("fp16", False) and not use_bf16 # Only use fp16 if bf16 is not set | |
log_info(f"Using precision: {'bf16' if use_bf16 else 'fp16' if use_fp16 else 'full precision'}") | |
# Get per device batch size - temporarily reduce if necessary for multi-GPU setup | |
per_device_batch_size = model_config.get("training", {}).get("per_device_train_batch_size", 24) | |
gradient_accumulation_steps = model_config.get("training", {}).get("gradient_accumulation_steps", 2) | |
# For multi-GPU setup, adjust for better balance | |
if torch.cuda.device_count() > 1: | |
log_info(f"Multi-GPU setup with {torch.cuda.device_count()} GPUs") | |
log_info(f"Training config: {per_device_batch_size} samples/GPU × {gradient_accumulation_steps} accumulation steps") | |
# Set up FSDP for multi-GPU training if available | |
fsdp_config = None | |
if torch.cuda.device_count() > 1: | |
try: | |
from torch.distributed.fsdp import ( | |
FullyShardedDataParallel as FSDP, | |
MixedPrecision, | |
BackwardPrefetch, | |
ShardingStrategy, | |
CPUOffload, | |
) | |
from torch.distributed.fsdp.wrap import ( | |
transformer_auto_wrap_policy, | |
enable_wrap, | |
wrap, | |
) | |
log_info("Using FSDP for distributed training") | |
# Configure FSDP | |
fsdp_config = { | |
"fsdp_transformer_layer_cls_to_wrap": ["LlamaDecoderLayer"], | |
"fsdp_offload_params": False, | |
"fsdp_backward_prefetch": "BACKWARD_PRE", | |
"fsdp_min_num_params": 1e6, | |
"fsdp_sharding_strategy": 1, # FULL_SHARD | |
} | |
if use_bf16 or use_fp16: | |
precision_type = "bf16" if use_bf16 else "fp16" | |
fsdp_config["fsdp_state_dict_type"] = "FULL_STATE_DICT" | |
log_info(f"FSDP using mixed precision: {precision_type}") | |
except ImportError: | |
log_info("FSDP imports failed, falling back to standard DDP") | |
fsdp_config = None | |
# Set up training arguments | |
log_info("Setting up training arguments") | |
training_args = TrainingArguments( | |
output_dir=model_config.get("output_dir", "./results") or model_config.get("checkpointing", {}).get("output_dir", "./results"), | |
num_train_epochs=model_config.get("training", {}).get("num_train_epochs", 3), | |
per_device_train_batch_size=per_device_batch_size, | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
learning_rate=model_config.get("training", {}).get("learning_rate", 2e-5), | |
weight_decay=model_config.get("training", {}).get("weight_decay", 0.01), | |
warmup_ratio=model_config.get("training", {}).get("warmup_ratio", 0.05), | |
lr_scheduler_type=model_config.get("training", {}).get("lr_scheduler_type", "cosine"), | |
logging_steps=model_config.get("training", {}).get("logging_steps", 10), | |
save_strategy=model_config.get("checkpointing", {}).get("save_strategy", "steps"), | |
save_steps=model_config.get("checkpointing", {}).get("save_steps", 100), | |
save_total_limit=model_config.get("checkpointing", {}).get("save_total_limit", 3), | |
fp16=use_fp16, | |
bf16=use_bf16, | |
max_grad_norm=model_config.get("training", {}).get("max_grad_norm", 1.0), | |
push_to_hub=model_config.get("huggingface_hub", {}).get("push_to_hub", False), | |
hub_model_id=model_config.get("huggingface_hub", {}).get("hub_model_id", None), | |
hub_token=os.environ.get("HF_TOKEN", None), | |
report_to="tensorboard", | |
remove_unused_columns=False, # Keep all columns | |
gradient_checkpointing=model_config.get("training", {}).get("gradient_checkpointing", True), | |
dataloader_pin_memory=True, # Keep data in pinned memory for faster transfer | |
optim=model_config.get("training", {}).get("optim", "adamw_torch"), | |
ddp_find_unused_parameters=False, # Improve distributed training efficiency | |
dataloader_drop_last=False, # Process all examples | |
dataloader_num_workers=2, # Reduced worker count | |
no_cuda=False if torch.cuda.is_available() else True, # Use CUDA if available | |
fsdp=fsdp_config, # Add FSDP configuration if available | |
) | |
# Create sequential sampler to maintain original dataset order | |
sequential_sampler = torch.utils.data.SequentialSampler(dataset) | |
# Initialize trainer first | |
log_info("Initializing Trainer") | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset, # We'll override this with our custom dataloader | |
data_collator=data_collator, | |
callbacks=[LoggingCallback()], | |
) | |
# Then override the get_train_dataloader method | |
def custom_get_train_dataloader(): | |
"""Custom dataloader that preserves original dataset order""" | |
log_info("Creating sequential dataloader to maintain original dataset order") | |
# Calculate batch size based on device availability | |
if getattr(training_args, "no_cuda", False): | |
batch_size = training_args.per_device_train_batch_size | |
else: | |
batch_size = max(training_args.per_device_train_batch_size * max(1, torch.cuda.device_count()), 1) | |
log_info(f"Using sequential sampler with batch size {batch_size}") | |
# Return DataLoader with sequential sampler | |
return torch.utils.data.DataLoader( | |
dataset, | |
batch_size=batch_size, | |
sampler=sequential_sampler, | |
collate_fn=data_collator, | |
drop_last=training_args.dataloader_drop_last, | |
num_workers=training_args.dataloader_num_workers, | |
pin_memory=training_args.dataloader_pin_memory, | |
) | |
# Override the get_train_dataloader method | |
trainer.get_train_dataloader = custom_get_train_dataloader | |
# Start training | |
log_info("=== Starting Training ===") | |
try: | |
# Empty cache again right before training | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
log_info("Cleared CUDA cache before training") | |
# Display compact training info | |
total_steps = int(len(dataset) / (per_device_batch_size * torch.cuda.device_count() * gradient_accumulation_steps) * training_args.num_train_epochs) | |
log_info(f"Training plan: {len(dataset)} examples over {training_args.num_train_epochs} epochs ≈ {total_steps} steps") | |
trainer.train() | |
log_info("Training completed successfully!") | |
# Save the final model | |
log_info("Saving final model...") | |
trainer.save_model() | |
log_info(f"Model saved to {training_args.output_dir}") | |
# Push to hub if enabled | |
if model_config.get("huggingface_hub", {}).get("push_to_hub", False): | |
hub_id = model_config.get("huggingface_hub", {}).get("hub_model_id", "model") | |
log_info(f"Pushing model to Hugging Face Hub as {hub_id}...") | |
trainer.push_to_hub() | |
log_info("Model successfully pushed to Hub") | |
return 0 | |
except Exception as e: | |
logger.error(f"Training failed with error: {str(e)}") | |
# Log CUDA memory info if available in compact format | |
if torch.cuda.is_available(): | |
memory_info = [] | |
for i in range(torch.cuda.device_count()): | |
allocated = torch.cuda.memory_allocated(i) / 1024**2 | |
reserved = torch.cuda.memory_reserved(i) / 1024**2 | |
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2 | |
memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB (max: {max_mem:.1f}MB)") | |
logger.error(f"GPU memory at failure: {', '.join(memory_info)}") | |
raise | |
except Exception as e: | |
logger.error(f"Error in main training loop: {str(e)}") | |
return 1 | |
if __name__ == "__main__": | |
sys.exit(main()) | |