Spaces:
Sleeping
Sleeping
from typing import Any, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin | |
from diffusers.models.attention import FeedForward | |
from diffusers.models.attention_processor import ( | |
Attention, | |
FluxAttnProcessor2_0, | |
FluxSingleAttnProcessor2_0, | |
) | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import ( | |
AdaLayerNormContinuous, | |
AdaLayerNormZero, | |
AdaLayerNormZeroSingle, | |
) | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
is_torch_version, | |
logging, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.embeddings import ( | |
CombinedTimestepGuidanceTextProjEmbeddings, | |
CombinedTimestepTextProjEmbeddings, | |
) | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# YiYi to-do: refactor rope related functions/classes | |
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: | |
assert dim % 2 == 0, "The dimension must be even." | |
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim | |
omega = 1.0 / (theta**scale) | |
batch_size, seq_length = pos.shape | |
out = torch.einsum("...n,d->...nd", pos, omega) | |
cos_out = torch.cos(out) | |
sin_out = torch.sin(out) | |
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) | |
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2) | |
return out.float() | |
# YiYi to-do: refactor rope related functions/classes | |
class EmbedND(nn.Module): | |
def __init__(self, dim: int, theta: int, axes_dim: List[int]): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids: torch.Tensor) -> torch.Tensor: | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
dim=-3, | |
) | |
return emb.unsqueeze(1) | |
class FluxSingleTransformerBlock(nn.Module): | |
r""" | |
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the | |
processing of `context` conditions. | |
""" | |
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): | |
super().__init__() | |
self.mlp_hidden_dim = int(dim * mlp_ratio) | |
self.norm = AdaLayerNormZeroSingle(dim) | |
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) | |
self.act_mlp = nn.GELU(approximate="tanh") | |
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) | |
processor = FluxSingleAttnProcessor2_0() | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
bias=True, | |
processor=processor, | |
qk_norm="rms_norm", | |
eps=1e-6, | |
pre_only=True, | |
) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
image_rotary_emb=None, | |
): | |
residual = hidden_states | |
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) | |
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) | |
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
gate = gate.unsqueeze(1) | |
hidden_states = gate * self.proj_out(hidden_states) | |
hidden_states = residual + hidden_states | |
if hidden_states.dtype == torch.float16: | |
hidden_states = hidden_states.clip(-65504, 65504) | |
return hidden_states | |
class FluxTransformerBlock(nn.Module): | |
r""" | |
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the | |
processing of `context` conditions. | |
""" | |
def __init__( | |
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6 | |
): | |
super().__init__() | |
self.norm1 = AdaLayerNormZero(dim) | |
self.norm1_context = AdaLayerNormZero(dim) | |
if hasattr(F, "scaled_dot_product_attention"): | |
processor = FluxAttnProcessor2_0() | |
else: | |
raise ValueError( | |
"The current PyTorch version does not support the `scaled_dot_product_attention` function." | |
) | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
context_pre_only=False, | |
bias=True, | |
processor=processor, | |
qk_norm=qk_norm, | |
eps=eps, | |
) | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward( | |
dim=dim, dim_out=dim, activation_fn="gelu-approximate" | |
) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
image_rotary_emb=None, | |
): | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, emb=temb | |
) | |
( | |
norm_encoder_hidden_states, | |
c_gate_msa, | |
c_shift_mlp, | |
c_scale_mlp, | |
c_gate_mlp, | |
) = self.norm1_context(encoder_hidden_states, emb=temb) | |
# Attention. | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) | |
# Process attention outputs for the `hidden_states`. | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = hidden_states + attn_output | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = ( | |
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
) | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = hidden_states + ff_output | |
# Process attention outputs for the `encoder_hidden_states`. | |
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output | |
encoder_hidden_states = encoder_hidden_states + context_attn_output | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_encoder_hidden_states = ( | |
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) | |
+ c_shift_mlp[:, None] | |
) | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
encoder_hidden_states = ( | |
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
) | |
if encoder_hidden_states.dtype == torch.float16: | |
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) | |
return encoder_hidden_states, hidden_states | |
class FluxTransformer2DModel( | |
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin | |
): | |
""" | |
The Transformer model introduced in Flux. | |
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
Parameters: | |
patch_size (`int`): Patch size to turn the input data into small patches. | |
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. | |
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. | |
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. | |
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. | |
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. | |
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
patch_size: int = 1, | |
in_channels: int = 64, | |
num_layers: int = 19, | |
num_single_layers: int = 38, | |
attention_head_dim: int = 128, | |
num_attention_heads: int = 24, | |
joint_attention_dim: int = 4096, | |
pooled_projection_dim: int = 768, | |
guidance_embeds: bool = False, | |
axes_dims_rope: List[int] = [16, 56, 56], | |
): | |
super().__init__() | |
self.out_channels = in_channels | |
self.inner_dim = ( | |
self.config.num_attention_heads * self.config.attention_head_dim | |
) | |
self.pos_embed = EmbedND( | |
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope | |
) | |
text_time_guidance_cls = ( | |
CombinedTimestepGuidanceTextProjEmbeddings | |
if guidance_embeds | |
else CombinedTimestepTextProjEmbeddings | |
) | |
self.time_text_embed = text_time_guidance_cls( | |
embedding_dim=self.inner_dim, | |
pooled_projection_dim=self.config.pooled_projection_dim, | |
) | |
self.context_embedder = nn.Linear( | |
self.config.joint_attention_dim, self.inner_dim | |
) | |
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
FluxTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_layers) | |
] | |
) | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
FluxSingleTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_single_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous( | |
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6 | |
) | |
self.proj_out = nn.Linear( | |
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True | |
) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor = None, | |
pooled_projections: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
img_ids: torch.Tensor = None, | |
txt_ids: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_block_samples=None, | |
controlnet_single_block_samples=None, | |
return_dict: bool = True, | |
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
""" | |
The [`FluxTransformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if ( | |
joint_attention_kwargs is not None | |
and joint_attention_kwargs.get("scale", None) is not None | |
): | |
logger.warning( | |
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
hidden_states = self.x_embedder(hidden_states) | |
timestep = timestep.to(hidden_states.dtype) * 1000 | |
if guidance is not None: | |
guidance = guidance.to(hidden_states.dtype) * 1000 | |
else: | |
guidance = None | |
temb = ( | |
self.time_text_embed(timestep, pooled_projections) | |
if guidance is None | |
else self.time_text_embed(timestep, guidance, pooled_projections) | |
) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
image_rotary_emb = self.pos_embed(ids) | |
for index_block, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
( | |
encoder_hidden_states, | |
hidden_states, | |
) = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
) | |
# controlnet residual | |
if controlnet_block_samples is not None: | |
interval_control = len(self.transformer_blocks) / len( | |
controlnet_block_samples | |
) | |
interval_control = int(np.ceil(interval_control)) | |
hidden_states = ( | |
hidden_states | |
+ controlnet_block_samples[index_block // interval_control] | |
) | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
for index_block, block in enumerate(self.single_transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
temb, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
) | |
# controlnet residual | |
if controlnet_single_block_samples is not None: | |
interval_control = len(self.single_transformer_blocks) / len( | |
controlnet_single_block_samples | |
) | |
interval_control = int(np.ceil(interval_control)) | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
+ controlnet_single_block_samples[index_block // interval_control] | |
) | |
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
hidden_states = self.norm_out(hidden_states, temb) | |
output = self.proj_out(hidden_states) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |