Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from dotenv import load_dotenv | |
from AI_Risk_app import retrieval_augmented_qa_chain # Importing the RAG chain | |
# Load the .env file | |
import streamlit as st | |
import openai | |
# Get OpenAI API key from Streamlit secrets | |
#openai.api_key = st.secrets["OPENAI_API_KEY"] | |
# Load environment variables | |
load_dotenv() | |
# Load environment variables from a .env file | |
openai_api_key = os.getenv('OPENAI_API_KEY') | |
# Set up the Streamlit interface | |
st.title("AI Risk Advisory QA") | |
# Get the user query | |
user_query = st.text_input("Ask your question:") | |
# Button to trigger the RAG process | |
if st.button("Get Answer"): | |
if user_query: | |
# Pass user query through RAG chain | |
result = retrieval_augmented_qa_chain.invoke({"question": user_query}) | |
# Extract response content from RAG result | |
response_content = result["response"].content | |
# Display the response content in the Streamlit app | |
st.write("**Answer:**") | |
st.write(response_content) | |
else: | |
st.write("Please enter a question.") |