import os import streamlit as st from dotenv import load_dotenv from AI_Risk_app import retrieval_augmented_qa_chain # Importing the RAG chain # Load the .env file import streamlit as st import openai # Get OpenAI API key from Streamlit secrets #openai.api_key = st.secrets["OPENAI_API_KEY"] # Load environment variables load_dotenv() # Load environment variables from a .env file openai_api_key = os.getenv('OPENAI_API_KEY') # Set up the Streamlit interface st.title("AI Risk Advisory QA") # Get the user query user_query = st.text_input("Ask your question:") # Button to trigger the RAG process if st.button("Get Answer"): if user_query: # Pass user query through RAG chain result = retrieval_augmented_qa_chain.invoke({"question": user_query}) # Extract response content from RAG result response_content = result["response"].content # Display the response content in the Streamlit app st.write("**Answer:**") st.write(response_content) else: st.write("Please enter a question.")