Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple | |
import numpy as np | |
from inference.core.models.object_detection_base import ( | |
ObjectDetectionBaseOnnxRoboflowInferenceModel, | |
) | |
class YOLONASObjectDetection(ObjectDetectionBaseOnnxRoboflowInferenceModel): | |
box_format = "xyxy" | |
def weights_file(self) -> str: | |
"""Gets the weights file for the YOLO-NAS model. | |
Returns: | |
str: Path to the ONNX weights file. | |
""" | |
return "weights.onnx" | |
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray]: | |
"""Performs object detection on the given image using the ONNX session. | |
Args: | |
img_in (np.ndarray): Input image as a NumPy array. | |
Returns: | |
Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores. | |
""" | |
predictions = self.onnx_session.run(None, {self.input_name: img_in}) | |
boxes = predictions[0] | |
class_confs = predictions[1] | |
confs = np.expand_dims(np.max(class_confs, axis=2), axis=2) | |
predictions = np.concatenate([boxes, confs, class_confs], axis=2) | |
return (predictions,) | |