from typing import Tuple import numpy as np from inference.core.models.object_detection_base import ( ObjectDetectionBaseOnnxRoboflowInferenceModel, ) class YOLONASObjectDetection(ObjectDetectionBaseOnnxRoboflowInferenceModel): box_format = "xyxy" @property def weights_file(self) -> str: """Gets the weights file for the YOLO-NAS model. Returns: str: Path to the ONNX weights file. """ return "weights.onnx" def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray]: """Performs object detection on the given image using the ONNX session. Args: img_in (np.ndarray): Input image as a NumPy array. Returns: Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores. """ predictions = self.onnx_session.run(None, {self.input_name: img_in}) boxes = predictions[0] class_confs = predictions[1] confs = np.expand_dims(np.max(class_confs, axis=2), axis=2) predictions = np.concatenate([boxes, confs, class_confs], axis=2) return (predictions,)