F-Lite / f_lite /pipeline.py
ideprado's picture
Renaming
dcb2d8b
import logging
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers import AutoencoderKL, DiffusionPipeline
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from PIL import Image
from torch import FloatTensor
from tqdm.auto import tqdm
from transformers import T5EncoderModel, T5TokenizerFast
logger = logging.getLogger(__name__)
@dataclass
class APGConfig:
"""APG (Augmented Parallel Guidance) configuration"""
enabled: bool = True
orthogonal_threshold: float = 0.03
@dataclass
class FLitePipelineOutput(BaseOutput):
"""
Output class for FLitePipeline pipeline.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
"""
images: Union[List[Image.Image], np.ndarray]
class FLitePipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using FLite model.
This model inherits from [`DiffusionPipeline`].
"""
model_cpu_offload_seq = "text_encoder->dit_model->vae"
dit_model: torch.nn.Module
vae: AutoencoderKL
text_encoder: T5EncoderModel
tokenizer: T5TokenizerFast
_progress_bar_config: Dict[str, Any]
def __init__(
self, dit_model: torch.nn.Module, vae: AutoencoderKL, text_encoder: T5EncoderModel, tokenizer: T5TokenizerFast
):
super().__init__()
# Register all modules for the pipeline
# Access DiffusionPipeline's register_modules directly to avoid mypy error
DiffusionPipeline.register_modules(
self, dit_model=dit_model, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer
)
# Move models to channels last for better performance
# AutoencoderKL inherits from torch.nn.Module which has these methods
if hasattr(self.vae, "to"):
self.vae.to(memory_format=torch.channels_last)
if hasattr(self.vae, "requires_grad_"):
self.vae.requires_grad_(False)
if hasattr(self.text_encoder, "requires_grad_"):
self.text_encoder.requires_grad_(False)
# Constants
self.vae_scale_factor = 8
self.return_index = -8 # T5 hidden state index to use
def enable_vae_slicing(self):
"""Enable VAE slicing for memory efficiency."""
if hasattr(self.vae, "enable_slicing"):
self.vae.enable_slicing()
def enable_vae_tiling(self):
"""Enable VAE tiling for memory efficiency."""
if hasattr(self.vae, "enable_tiling"):
self.vae.enable_tiling()
def set_progress_bar_config(self, **kwargs):
"""Set progress bar configuration."""
self._progress_bar_config = kwargs
def progress_bar(self, iterable=None, **kwargs):
"""Create progress bar for iterations."""
self._progress_bar_config = getattr(self, "_progress_bar_config", None) or {}
config = {**self._progress_bar_config, **kwargs}
return tqdm(iterable, **config)
def encode_prompt(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
max_sequence_length: int = 512,
return_index: int = -8,
) -> Tuple[FloatTensor, FloatTensor]:
"""Encodes the prompt and negative prompt."""
if isinstance(prompt, str):
prompt = [prompt]
device = device or self.text_encoder.device
# Text encoder forward pass
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(device)
prompt_embeds = self.text_encoder(text_input_ids, return_dict=True, output_hidden_states=True)
prompt_embeds_tensor = prompt_embeds.hidden_states[return_index]
if return_index != -1:
prompt_embeds_tensor = self.text_encoder.encoder.final_layer_norm(prompt_embeds_tensor)
prompt_embeds_tensor = self.text_encoder.encoder.dropout(prompt_embeds_tensor)
dtype = dtype or next(self.text_encoder.parameters()).dtype
prompt_embeds_tensor = prompt_embeds_tensor.to(dtype=dtype, device=device)
# Handle negative prompts
if negative_prompt is None:
negative_embeds = torch.zeros_like(prompt_embeds_tensor)
else:
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
negative_result = self.encode_prompt(
prompt=negative_prompt, device=device, dtype=dtype, return_index=return_index
)
negative_embeds = negative_result[0]
# Explicitly cast both tensors to FloatTensor for mypy
from typing import cast
prompt_tensor = cast(FloatTensor, prompt_embeds_tensor.to(dtype=dtype))
negative_tensor = cast(FloatTensor, negative_embeds.to(dtype=dtype))
return (prompt_tensor, negative_tensor)
def to(self, torch_device=None, torch_dtype=None, silence_dtype_warnings=False):
"""Move pipeline components to specified device and dtype."""
if hasattr(self, "vae"):
self.vae.to(device=torch_device, dtype=torch_dtype)
if hasattr(self, "text_encoder"):
self.text_encoder.to(device=torch_device, dtype=torch_dtype)
if hasattr(self, "dit_model"):
self.dit_model.to(device=torch_device, dtype=torch_dtype)
return self
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = 1024,
width: Optional[int] = 1024,
num_inference_steps: int = 30,
guidance_scale: float = 3.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
dtype: Optional[torch.dtype] = None,
alpha: Optional[float] = None,
apg_config: Optional[APGConfig] = None,
**kwargs,
):
"""Generate images from text prompt."""
batch_size = 1 # TODO: Make this method support batch generation
# Ensure height and width are not None for calculation
if height is None:
height = 1024
if width is None:
width = 1024
dtype = dtype or next(self.dit_model.parameters()).dtype
apg_config = apg_config or APGConfig()
device = self._execution_device
# 2. Encode prompts
prompt_embeds, negative_embeds = self.encode_prompt(
prompt=prompt, negative_prompt=negative_prompt, device=self.text_encoder.device, dtype=dtype
)
# 3. Initialize latents
latent_height = height // self.vae_scale_factor
latent_width = width // self.vae_scale_factor
if isinstance(generator, list):
if len(generator) != batch_size:
raise ValueError(f"Got {len(generator)} generators for {batch_size} samples")
latents = randn_tensor((batch_size, 16, latent_height, latent_width), generator=generator, device=device, dtype=dtype)
acc_latents = latents.clone()
# 4. Calculate alpha if not provided
if alpha is None:
image_token_size = latent_height * latent_width
alpha = 2 * math.sqrt(image_token_size / (64 * 64))
# 6. Sampling loop
self.dit_model.eval()
# Check if guidance is needed
do_classifier_free_guidance = guidance_scale >= 1.0
for i in self.progress_bar(range(num_inference_steps, 0, -1)):
# Calculate timesteps
t = i / num_inference_steps
t_next = (i - 1) / num_inference_steps
# Scale timesteps according to alpha
t = t * alpha / (1 + (alpha - 1) * t)
t_next = t_next * alpha / (1 + (alpha - 1) * t_next)
dt = t - t_next
# Create tensor with proper device
t_tensor = torch.tensor([t] * batch_size, device=device, dtype=dtype)
if do_classifier_free_guidance:
# Duplicate latents for both conditional and unconditional inputs
latents_input = torch.cat([latents] * 2)
# Concatenate negative and positive prompt embeddings
context_input = torch.cat([negative_embeds, prompt_embeds])
# Duplicate timesteps for the batch
t_input = torch.cat([t_tensor] * 2)
# Get model predictions in a single pass
model_outputs = self.dit_model(latents_input, context_input, t_input)
# Split outputs back into unconditional and conditional predictions
uncond_output, cond_output = model_outputs.chunk(2)
if apg_config.enabled:
# Augmented Parallel Guidance
dy = cond_output
dd = cond_output - uncond_output
# Find parallel direction
parallel_direction = (dy * dd).sum() / (dy * dy).sum() * dy
orthogonal_direction = dd - parallel_direction
# Scale orthogonal component
orthogonal_std = orthogonal_direction.std()
orthogonal_scale = min(1, apg_config.orthogonal_threshold / orthogonal_std)
orthogonal_direction = orthogonal_direction * orthogonal_scale
model_output = dy + (guidance_scale - 1) * orthogonal_direction
else:
# Standard classifier-free guidance
model_output = uncond_output + guidance_scale * (cond_output - uncond_output)
else:
# If no guidance needed, just run the model normally
model_output = self.dit_model(latents, prompt_embeds, t_tensor)
# Update latents
acc_latents = acc_latents + dt * model_output.to(device)
latents = acc_latents.clone()
# 7. Decode latents
# These checks handle the case where mypy doesn't recognize these attributes
scaling_factor = getattr(self.vae.config, "scaling_factor", 0.18215) if hasattr(self.vae, "config") else 0.18215
shift_factor = getattr(self.vae.config, "shift_factor", 0) if hasattr(self.vae, "config") else 0
latents = latents / scaling_factor + shift_factor
vae_dtype = self.vae.dtype if hasattr(self.vae, "dtype") else dtype
decoded_images = self.vae.decode(latents.to(vae_dtype)).sample if hasattr(self.vae, "decode") else latents
# Offload all models
try:
self.maybe_free_model_hooks()
except AttributeError as e:
if "OptimizedModule" in str(e):
import warnings
warnings.warn(
"Encountered 'OptimizedModule' error when offloading models. "
"This issue might be fixed in the future by: "
"https://github.com/huggingface/diffusers/pull/10730"
)
else:
raise
# 8. Post-process images
images = (decoded_images / 2 + 0.5).clamp(0, 1)
# Convert to PIL Images
images = (images * 255).round().clamp(0, 255).to(torch.uint8).cpu()
pil_images = [Image.fromarray(img.permute(1, 2, 0).numpy()) for img in images]
return FLitePipelineOutput(
images=pil_images,
)