FrameRateTech's picture
Update app.py
b08d1d7 verified
# app.py - Final Version with Direct Text Generation
import os
import gc
import logging
import traceback
import time
import transformers
import torch
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig
)
###############################################################################
# Configure Logging
###############################################################################
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger("DamageScan-App")
###############################################################################
# Model Configuration
###############################################################################
MODEL_ID = "FrameRateTech/DamageScan-llama-8b-instruct-merged"
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful, and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question is not clear or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
###############################################################################
# Memory Management
###############################################################################
def optimize_memory():
"""Optimize memory usage by clearing caches and forcing garbage collection"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logger.info("Memory optimized: caches cleared and garbage collected")
###############################################################################
# Model Loading with Error Handling
###############################################################################
def load_model_and_tokenizer():
"""Load the model with comprehensive error handling and logging"""
logger.info(f"Loading model: {MODEL_ID}")
logger.info(f"Transformers version: {transformers.__version__}")
logger.info(f"PyTorch version: {torch.__version__}")
# Check available devices
device_info = {
"cuda_available": torch.cuda.is_available(),
"device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0,
"mps_available": hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
}
logger.info(f"Device information: {device_info}")
# First try to load a base tokenizer for the pipeline - doesn't need to be perfect
try:
logger.info("Loading base Llama tokenizer for pipeline...")
# Use the base model's tokenizer, which should be compatible
tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
trust_remote_code=True
)
logger.info(f"Base tokenizer loaded: {type(tokenizer).__name__}")
except Exception as e:
logger.warning(f"Could not load base tokenizer: {str(e)}")
logger.warning("Will try to initialize pipeline without explicit tokenizer")
tokenizer = None
# Load model with detailed error logging
try:
logger.info("Loading model...")
model_start = time.time()
# Determine device map strategy
if device_info["cuda_available"]:
device_map = "auto"
torch_dtype = torch.float16
logger.info("Using 'auto' device map for CUDA with float16 precision")
elif device_info["mps_available"]:
device_map = {"": "mps"}
torch_dtype = torch.float16
logger.info("Using MPS device with float16 precision")
else:
device_map = {"": "cpu"}
torch_dtype = torch.float32
logger.info("Using CPU with float32 precision")
# Load the model
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch_dtype,
device_map=device_map,
trust_remote_code=True,
)
model.eval()
model_load_time = time.time() - model_start
logger.info(f"Model loaded successfully in {model_load_time:.2f} seconds")
# Log model info
try:
model_info = {
"model_type": model.config.model_type,
"hidden_size": model.config.hidden_size,
"vocab_size": model.config.vocab_size,
"num_hidden_layers": model.config.num_hidden_layers
}
logger.info(f"Model properties: {model_info}")
except Exception as e:
logger.warning(f"Could not log all model properties: {str(e)}")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
logger.error(traceback.format_exc())
raise RuntimeError(f"Failed to load model: {str(e)}")
return model, tokenizer
###############################################################################
# Direct Text Generation
###############################################################################
def format_prompt(messages, system_prompt=DEFAULT_SYSTEM_PROMPT):
"""
Format messages into a simplified prompt for the model.
This is an ultra-simplified version that just uses plain text.
"""
logger.info(f"Formatting prompt with {len(messages)} messages")
# Start with the system prompt
prompt = f"SYSTEM: {system_prompt}\n\n"
# Add all messages
for msg in messages:
role = msg["role"] if isinstance(msg, dict) else msg[0]
content = msg["content"] if isinstance(msg, dict) else msg[1]
if role.lower() == "system":
# Skip additional system messages as we already added one
continue
elif role.lower() == "user" or role.lower() == "human":
prompt += f"USER: {content}\n\n"
elif role.lower() == "assistant" or role.lower() == "ai":
prompt += f"ASSISTANT: {content}\n\n"
# Add the final assistant prefix for the model to continue
prompt += "ASSISTANT: "
logger.info(f"Formatted prompt (length: {len(prompt)})")
return prompt
def generate_text(model, tokenizer, prompt, temperature=0.7, top_p=0.9, max_new_tokens=256):
"""
Generate text using the pipeline with explicit tokenizer.
"""
logger.info(f"Generating text with temp={temperature}, top_p={top_p}, max_tokens={max_new_tokens}")
try:
# Log what we're doing
logger.info(f"Input prompt length: {len(prompt)}")
# Generation config
gen_config = {
"temperature": temperature,
"top_p": top_p,
"do_sample": True,
"max_new_tokens": max_new_tokens,
"repetition_penalty": 1.1,
}
logger.info(f"Generation config: {gen_config}")
# Create pipeline with explicit tokenizer if available
if tokenizer:
logger.info("Creating pipeline with explicit tokenizer")
pipe = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map=model.device_map if hasattr(model, "device_map") else "auto"
)
else:
# Fallback approach - try to create a direct generate function
logger.info("No tokenizer available, using direct model.generate")
# Simple direct generation
generation_start = time.time()
# Encode input with default settings
inputs = model.tokenize_using_default(prompt)
inputs = {k: v.to(model.device) if torch.is_tensor(v) else v for k, v in inputs.items()}
# Generate with model directly
with torch.no_grad():
outputs = model.generate(
**inputs,
**gen_config
)
# Decode using model's default
generated_text = model.decode_using_default(outputs[0])
generation_time = time.time() - generation_start
logger.info(f"Direct generation completed in {generation_time:.2f} seconds")
# Extract just the new text
response = generated_text[len(prompt):].strip()
logger.info(f"Generated response length: {len(response)}")
return response
# Normal pipeline-based generation
generation_start = time.time()
outputs = pipe(
prompt,
return_full_text=True,
**gen_config
)
generation_time = time.time() - generation_start
logger.info(f"Pipeline generation completed in {generation_time:.2f} seconds")
# Extract the generated text
generated_text = outputs[0]["generated_text"]
# Extract just the assistant's response
response = generated_text[len(prompt):].strip()
logger.info(f"Generated response length: {len(response)}")
return response
except Exception as e:
logger.error(f"Error in generate_text: {e}")
logger.error(traceback.format_exc())
# Try one more fallback approach with manual text generation
try:
logger.info("Trying fallback manual text generation approach")
# Very minimal approach - just return a message
return "I'm having trouble generating a response right now. Please try again with different parameters or a different question."
except Exception as e2:
logger.error(f"Fallback approach also failed: {e2}")
return "I encountered an error while generating a response. Please try again."
###############################################################################
# Gradio Interface
###############################################################################
def build_gradio_interface(model, tokenizer):
"""Build and launch the Gradio interface"""
logger.info("Building Gradio interface")
def user_submit(message_history, user_text, temp, top_p, max_tokens, system_message):
"""Handle user message submission"""
logger.info(f"Received user message: '{user_text[:50]}...' (length: {len(user_text)})")
if not user_text.strip():
logger.warning("Empty user message, skipping processing")
return message_history, ""
try:
# Make sure message_history is properly initialized
if message_history is None:
message_history = []
# Format message_history as a list of dictionaries if it's not already
formatted_history = []
for msg in message_history:
if isinstance(msg, tuple):
role = "user" if msg[0] == "user" or msg[0] == "human" else "assistant"
formatted_history.append({"role": role, "content": msg[1]})
elif isinstance(msg, dict):
formatted_history.append(msg)
# Add system message if needed
if not formatted_history or formatted_history[0]["role"] != "system":
formatted_history.insert(0, {"role": "system", "content": system_message})
# Add user message to history
formatted_history.append({"role": "user", "content": user_text})
# Format the prompt
prompt = format_prompt(formatted_history)
# Generate response
assistant_response = generate_text(
model,
tokenizer,
prompt,
temperature=temp,
top_p=top_p,
max_new_tokens=max_tokens
)
# Add assistant message to formatted history
formatted_history.append({"role": "assistant", "content": assistant_response})
# Convert back to format expected by Gradio's Chatbot with type="messages"
# For type="messages", we need a list of dicts with role/content keys
display_history = []
for msg in formatted_history:
if msg["role"] == "system":
continue # Skip system messages
display_history.append({"role": msg["role"], "content": msg["content"]})
logger.info(f"Added assistant response (length: {len(assistant_response)})")
# Optimize memory after generation
optimize_memory()
return display_history, ""
except Exception as e:
logger.error(f"Error in user_submit: {str(e)}")
logger.error(traceback.format_exc())
# Return original message history plus error message
error_msg = "I encountered an error processing your request. Please try again."
# Create error messages in the correct format
if message_history is None:
return [
{"role": "user", "content": user_text},
{"role": "assistant", "content": error_msg}
], ""
else:
# Try to safely convert to message format
try:
# If already in dict format, just append
if message_history and isinstance(message_history[0], dict):
message_history.append({"role": "user", "content": user_text})
message_history.append({"role": "assistant", "content": error_msg})
# If in tuple format, convert to dict format
else:
new_history = []
for msg in message_history:
if isinstance(msg, tuple):
role = "user" if msg[0] == "user" else "assistant"
new_history.append({"role": role, "content": msg[1]})
else:
new_history.append(msg)
new_history.append({"role": "user", "content": user_text})
new_history.append({"role": "assistant", "content": error_msg})
message_history = new_history
return message_history, ""
except:
# Last resort fallback
return [
{"role": "user", "content": user_text},
{"role": "assistant", "content": error_msg}
], ""
def clear_chat():
"""Clear the chat history"""
logger.info("Clearing chat history")
optimize_memory()
return [], ""
# Define the Gradio interface
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown("<h1 align='center'>DamageScan 8B Instruct Chatbot</h1>")
gr.Markdown("<p align='center'>Powered by FrameRateTech/DamageScan-llama-8b-instruct-merged</p>")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Chat History",
height=600,
type="messages", # Use messages format (new style)
avatar_images=(None, "https://huggingface.co/spaces/FrameRateTech/DamageScan-8b-instruct-chat/resolve/main/avatar.png"),
)
with gr.Row():
with gr.Column(scale=8):
user_input = gr.Textbox(
lines=3,
label="Your Message",
placeholder="Type your message here...",
show_copy_button=True
)
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear Chat")
with gr.Column(scale=1):
gr.Markdown("### System Prompt")
system_prompt_input = gr.Textbox(
lines=5,
label="System Instructions",
value=DEFAULT_SYSTEM_PROMPT,
show_copy_button=True
)
gr.Markdown("### Generation Settings")
temperature_slider = gr.Slider(
minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature",
info="Higher values make output more random, lower values more deterministic"
)
top_p_slider = gr.Slider(
minimum=0.5, maximum=1.0, value=0.9, step=0.05, label="Top-p",
info="Controls diversity via nucleus sampling"
)
max_tokens_slider = gr.Slider(
minimum=64, maximum=1024, value=256, step=64, label="Max New Tokens",
info="Maximum length of generated response"
)
gr.Markdown("### Tips")
gr.Markdown("""
* Lower temperature (0.1-0.3) for factual responses
* Higher temperature (0.7-1.0) for creative tasks
* Reduce max tokens if responses are too long
* Clear chat if the model gets confused
""")
# Set up event handlers
submit_btn.click(
user_submit,
inputs=[chatbot, user_input, temperature_slider, top_p_slider, max_tokens_slider, system_prompt_input],
outputs=[chatbot, user_input],
)
user_input.submit(
user_submit,
inputs=[chatbot, user_input, temperature_slider, top_p_slider, max_tokens_slider, system_prompt_input],
outputs=[chatbot, user_input],
)
clear_btn.click(
clear_chat,
outputs=[chatbot, user_input]
)
# Add example prompts
gr.Examples(
examples=[
["Can you explain how the Large Hadron Collider works?"],
["Write a short story about a robot who learns to paint"],
["What are three ways to improve productivity when working from home?"],
["Explain quantum computing to me like I'm 10 years old"],
],
inputs=user_input,
label="Example Prompts"
)
return demo
###############################################################################
# Main Application Logic
###############################################################################
def main():
"""Main application entry point"""
try:
logger.info("Starting DamageScan 8B Instruct application")
logger.info(f"Environment: CUDA_VISIBLE_DEVICES={os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
# Load model and tokenizer
model, tokenizer = load_model_and_tokenizer()
# Add manual tokenization methods to model if they don't exist
if not hasattr(model, "tokenize_using_default"):
logger.info("Adding default tokenization methods to model")
def tokenize_using_default(text):
"""Very basic tokenization that just returns a dummy"""
logger.info("Using minimal default tokenization")
# Return dummy input_ids - this is a last resort
return {"input_ids": torch.tensor([[1]]).to(model.device)}
def decode_using_default(token_ids):
"""Very basic decoding that just returns a message"""
logger.info("Using minimal default decoding")
return "I'm having trouble generating a proper response."
# Add methods to model
model.tokenize_using_default = tokenize_using_default
model.decode_using_default = decode_using_default
# Build and launch Gradio interface
demo = build_gradio_interface(model, tokenizer)
# Launch the app
logger.info("Launching Gradio interface")
demo.queue().launch(
share=False,
debug=False,
show_error=True,
favicon_path="https://huggingface.co/spaces/FrameRateTech/DamageScan-8b-instruct-chat/resolve/main/favicon.ico"
)
except Exception as e:
logger.error(f"Application startup failed: {str(e)}")
logger.error(traceback.format_exc())
# Create a minimal fallback UI to show the error
with gr.Blocks() as fallback_demo:
gr.Markdown("# ⚠️ DamageScan 8B Application Error")
gr.Markdown(f"The application encountered an error during startup:\n\n```\n{str(e)}\n```")
gr.Markdown("Please check the logs for more details or try again later.")
fallback_demo.launch()
if __name__ == "__main__":
main()