codesearchBase / app.py
Forrest99's picture
Update app.py
f6942d6 verified
from flask import Flask, request, jsonify, render_template_string
from sentence_transformers import SentenceTransformer, util
import logging
import sys
import signal
# 初始化 Flask 应用
app = Flask(__name__)
# 配置日志,级别设为 INFO
logging.basicConfig(level=logging.INFO)
app.logger = logging.getLogger("CodeSearchAPI")
# 预定义代码片段
CODE_SNIPPETS = [
"def sort_list(x): return sorted(x)",
"""def count_above_threshold(elements, threshold=0):
return sum(1 for e in elements if e > threshold)""",
"""def find_min_max(elements):
return min(elements), max(elements)"""
"""def count_evens(nums):
return len([n for n in nums if n % 2 == 0])""",
"""def reverse_string(s):
return s[::-1]""",
"""def is_prime(n):
if n < 2:
return False
for i in range(2, int(n**0.5)+1):
if n % i == 0:
return False
return True""",
"""def factorial(n):
result = 1
for i in range(1, n+1):
result *= i
return result""",
"""def sum_of_squares(nums):
return sum(map(lambda x: x**2, nums))"""
]
# 全局服务状态
service_ready = False
# 优雅关闭处理
def handle_shutdown(signum, frame):
app.logger.info("收到终止信号,开始关闭...")
sys.exit(0)
signal.signal(signal.SIGTERM, handle_shutdown)
signal.signal(signal.SIGINT, handle_shutdown)
# 初始化模型和预计算编码
try:
app.logger.info("开始加载模型...")
model = SentenceTransformer(
"flax-sentence-embeddings/st-codesearch-distilroberta-base",
cache_folder="/model-cache"
)
# 预计算代码片段的编码(强制使用 CPU)
code_emb = model.encode(CODE_SNIPPETS, convert_to_tensor=True, device="cpu")
service_ready = True
app.logger.info("服务初始化完成")
except Exception as e:
app.logger.error("初始化失败: %s", str(e))
raise
# Hugging Face 健康检查端点,必须响应根路径
@app.route('/')
def hf_health_check():
# 如果请求接受 HTML,则返回一个简单的 HTML 页面(包含测试链接)
if request.accept_mimetypes.accept_html:
html = """
<h2>CodeSearch API</h2>
<p>服务状态:{{ status }}</p>
<p>你可以在地址栏输入 /search?query=你的查询 来测试接口</p>
"""
status = "ready" if service_ready else "initializing"
return render_template_string(html, status=status)
# 否则返回 JSON 格式的健康检查
if service_ready:
return jsonify({"status": "ready"}), 200
else:
return jsonify({"status": "initializing"}), 503
# 搜索 API 端点,同时支持 GET 和 POST 请求
@app.route('/search', methods=['GET', 'POST'])
def handle_search():
if not service_ready:
app.logger.info("服务未就绪")
return jsonify({"error": "服务正在初始化"}), 503
try:
# 根据请求方法提取查询内容
if request.method == 'GET':
query = request.args.get('query', '').strip()
else:
data = request.get_json() or {}
query = data.get('query', '').strip()
if not query:
app.logger.info("收到空的查询请求")
return jsonify({"error": "查询不能为空"}), 400
# 记录接收到的查询
app.logger.info("收到查询请求: %s", query)
# 对查询进行编码,并进行语义搜索
query_emb = model.encode(query, convert_to_tensor=True, device="cpu")
hits = util.semantic_search(query_emb, code_emb, top_k=1)[0]
best = hits[0]
result = {
"code": CODE_SNIPPETS[best['corpus_id']],
"score": round(float(best['score']), 4)
}
# 记录返回结果
app.logger.info("返回结果: %s", result)
return jsonify(result)
except Exception as e:
app.logger.error("请求处理失败: %s", str(e))
return jsonify({"error": "服务器内部错误"}), 500
if __name__ == "__main__":
# 本地测试用,Hugging Face Spaces 通常通过 gunicorn 启动
app.run(host='0.0.0.0', port=7860)