from flask import Flask, request, jsonify, render_template_string from sentence_transformers import SentenceTransformer, util import logging import sys import signal # 初始化 Flask 应用 app = Flask(__name__) # 配置日志,级别设为 INFO logging.basicConfig(level=logging.INFO) app.logger = logging.getLogger("CodeSearchAPI") # 预定义代码片段 CODE_SNIPPETS = [ "def sort_list(x): return sorted(x)", """def count_above_threshold(elements, threshold=0): return sum(1 for e in elements if e > threshold)""", """def find_min_max(elements): return min(elements), max(elements)""" """def count_evens(nums): return len([n for n in nums if n % 2 == 0])""", """def reverse_string(s): return s[::-1]""", """def is_prime(n): if n < 2: return False for i in range(2, int(n**0.5)+1): if n % i == 0: return False return True""", """def factorial(n): result = 1 for i in range(1, n+1): result *= i return result""", """def sum_of_squares(nums): return sum(map(lambda x: x**2, nums))""" ] # 全局服务状态 service_ready = False # 优雅关闭处理 def handle_shutdown(signum, frame): app.logger.info("收到终止信号,开始关闭...") sys.exit(0) signal.signal(signal.SIGTERM, handle_shutdown) signal.signal(signal.SIGINT, handle_shutdown) # 初始化模型和预计算编码 try: app.logger.info("开始加载模型...") model = SentenceTransformer( "flax-sentence-embeddings/st-codesearch-distilroberta-base", cache_folder="/model-cache" ) # 预计算代码片段的编码(强制使用 CPU) code_emb = model.encode(CODE_SNIPPETS, convert_to_tensor=True, device="cpu") service_ready = True app.logger.info("服务初始化完成") except Exception as e: app.logger.error("初始化失败: %s", str(e)) raise # Hugging Face 健康检查端点,必须响应根路径 @app.route('/') def hf_health_check(): # 如果请求接受 HTML,则返回一个简单的 HTML 页面(包含测试链接) if request.accept_mimetypes.accept_html: html = """

CodeSearch API

服务状态:{{ status }}

你可以在地址栏输入 /search?query=你的查询 来测试接口

""" status = "ready" if service_ready else "initializing" return render_template_string(html, status=status) # 否则返回 JSON 格式的健康检查 if service_ready: return jsonify({"status": "ready"}), 200 else: return jsonify({"status": "initializing"}), 503 # 搜索 API 端点,同时支持 GET 和 POST 请求 @app.route('/search', methods=['GET', 'POST']) def handle_search(): if not service_ready: app.logger.info("服务未就绪") return jsonify({"error": "服务正在初始化"}), 503 try: # 根据请求方法提取查询内容 if request.method == 'GET': query = request.args.get('query', '').strip() else: data = request.get_json() or {} query = data.get('query', '').strip() if not query: app.logger.info("收到空的查询请求") return jsonify({"error": "查询不能为空"}), 400 # 记录接收到的查询 app.logger.info("收到查询请求: %s", query) # 对查询进行编码,并进行语义搜索 query_emb = model.encode(query, convert_to_tensor=True, device="cpu") hits = util.semantic_search(query_emb, code_emb, top_k=1)[0] best = hits[0] result = { "code": CODE_SNIPPETS[best['corpus_id']], "score": round(float(best['score']), 4) } # 记录返回结果 app.logger.info("返回结果: %s", result) return jsonify(result) except Exception as e: app.logger.error("请求处理失败: %s", str(e)) return jsonify({"error": "服务器内部错误"}), 500 if __name__ == "__main__": # 本地测试用,Hugging Face Spaces 通常通过 gunicorn 启动 app.run(host='0.0.0.0', port=7860)