Mudassir-75's picture
Update app.py
64cdd29 verified
raw
history blame
13.5 kB
from flask import Flask, request, jsonify
import cv2
import numpy as np
import tensorflow as tf
from transformers import BlipProcessor, BlipForConditionalGeneration, CLIPProcessor, CLIPModel
import torch
import os
import requests
from tempfile import NamedTemporaryFile
import gc
import tensorflow_hub as hub
# Ensure that Hugging Face uses the appropriate cache directory
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
os.environ['HF_HOME'] = '/app/cache'
movenet_model_path = '/models/movenet/movenet_lightning'
# Check if the model path exists
if not os.path.exists(movenet_model_path):
# Download the model from TensorFlow Hub
movenet_model = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
else:
movenet_model = tf.saved_model.load(movenet_model_path)
# Load BLIP model
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-large')
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-large')
# Load CLIP model
clip_model = CLIPModel.from_pretrained('openai/clip-vit-large-patch14')
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-large-patch14')
# Keypoint dictionary for reference
KEYPOINT_DICT = {
'nose': 0,
'left_eye': 1,
'right_eye': 2,
'left_ear': 3,
'right_ear': 4,
'left_shoulder': 5,
'right_shoulder': 6,
'left_elbow': 7,
'right_elbow': 8,
'left_wrist': 9,
'right_wrist': 10,
'left_hip': 11,
'right_hip': 12,
'left_knee': 13,
'right_knee': 14,
'left_ankle': 15,
'right_ankle': 16
}
app = Flask(__name__)
@app.route('/process_video', methods=['POST'])
def process_video():
try:
# Clear previous cache
gc.collect()
torch.cuda.empty_cache()
# Get the video URL from the request
video_url = request.json.get('videoURL')
height = request.json.get('height')
weight = request.json.get('weight')
wingspan = request.json.get('wingspan')
if not video_url:
return jsonify({"error": "No video URL provided"}), 400
if not all([height, weight, wingspan]):
return jsonify({"error": "Height, weight, and wingspan are required"}), 400
# Download the video from the S3 URL
with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
response = requests.get(video_url)
if response.status_code != 200:
return jsonify({"error": "Failed to download video from the provided URL"}), 400
temp_video_file.write(response.content)
video_path = temp_video_file.name
# Open the video file
cap = cv2.VideoCapture(video_path)
frames = []
# Extract 60 frames from the video
success, frame = cap.read()
frame_count = 0
while success and frame_count < 20:
frames.append(frame)
success, frame = cap.read()
frame_count += 1
cap.release()
os.remove(video_path)
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
movenet_results = []
stances = []
hip_rotations = []
arm_extensions = []
stepping_jabs = []
guard_up = []
hand_returned = []
hips_width_apart = []
leg_angle_correct = []
punch_started = False
initial_left_wrist = None
initial_right_wrist = None
for frame_index, frame in enumerate(frames):
input_tensor = tf.image.resize_with_pad(tf.convert_to_tensor(frame, dtype=tf.uint8), 128, 128)
input_tensor = tf.cast(input_tensor, dtype=tf.int32) # Cast to int32 instead of float32
input_tensor = tf.expand_dims(input_tensor, axis=0)
keypoints = movenet_model.signatures['serving_default'](input_tensor)
keypoints_3d = keypoints['output_0'][0].numpy().tolist() # Assuming the model returns 3D keypoints
movenet_results.append(keypoints_3d)
# Detect stance based on keypoints (using ankles and wrists)
left_ankle = keypoints_3d[KEYPOINT_DICT['left_ankle']]
right_ankle = keypoints_3d[KEYPOINT_DICT['right_ankle']]
left_wrist = keypoints_3d[KEYPOINT_DICT['left_wrist']]
right_wrist = keypoints_3d[KEYPOINT_DICT['right_wrist']]
if right_ankle[0] < left_ankle[0] and right_wrist[0] < left_wrist[0]:
stance = "orthodox"
elif left_ankle[0] < right_ankle[0] and left_wrist[0] < right_wrist[0]:
stance = "southpaw"
else:
stance = "unknown"
stances.append(stance)
# Detect if guard is up (both hands near eye level at the side of the head)
nose = keypoints_3d[KEYPOINT_DICT['nose']]
guard_threshold = 0.1 # Threshold distance to consider hands near the head
left_hand_near_head = abs(left_wrist[1] - nose[1]) < guard_threshold
right_hand_near_head = abs(right_wrist[1] - nose[1]) < guard_threshold
guard_up.append(left_hand_near_head and right_hand_near_head)
# Determine if the punch has started (based on wrist movement)
if frame_index > 0:
previous_left_wrist = movenet_results[frame_index - 1][KEYPOINT_DICT['left_wrist']]
previous_right_wrist = movenet_results[frame_index - 1][KEYPOINT_DICT['right_wrist']]
if stance == "orthodox" and (left_wrist[0] - previous_left_wrist[0]) > 0.05:
punch_started = True
if initial_left_wrist is None:
initial_left_wrist = left_wrist
elif stance == "southpaw" and (right_wrist[0] - previous_right_wrist[0]) > 0.05:
punch_started = True
if initial_right_wrist is None:
initial_right_wrist = right_wrist
# Detect hip rotation (based on left and right hips, considering stance and punch start)
left_hip = keypoints_3d[KEYPOINT_DICT['left_hip']]
right_hip = keypoints_3d[KEYPOINT_DICT['right_hip']]
if punch_started:
if stance == "orthodox":
hip_rotation = right_hip[0] - left_hip[0] # Right hip should move forward
elif stance == "southpaw":
hip_rotation = left_hip[0] - right_hip[0] # Left hip should move forward
else:
hip_rotation = 0
else:
hip_rotation = 0
hip_rotations.append(hip_rotation)
# Detect full arm extension (based on shoulder, elbow, and wrist, considering stance)
left_shoulder = keypoints_3d[KEYPOINT_DICT['left_shoulder']]
left_elbow = keypoints_3d[KEYPOINT_DICT['left_elbow']]
right_shoulder = keypoints_3d[KEYPOINT_DICT['right_shoulder']]
right_elbow = keypoints_3d[KEYPOINT_DICT['right_elbow']]
if stance == "orthodox":
lead_arm_extension = np.linalg.norm(np.array(left_wrist) - np.array(left_shoulder))
elif stance == "southpaw":
lead_arm_extension = np.linalg.norm(np.array(right_wrist) - np.array(right_shoulder))
else:
lead_arm_extension = 0
arm_extensions.append(lead_arm_extension)
# Detect stepping with the jab and coming back (based on ankles, considering stance and punch start)
if punch_started and frame_index > 0:
previous_left_ankle = movenet_results[frame_index - 1][KEYPOINT_DICT['left_ankle']]
previous_right_ankle = movenet_results[frame_index - 1][KEYPOINT_DICT['right_ankle']]
if stance == "orthodox":
step_movement = (left_ankle[0] - previous_left_ankle[0]) > 0.05 # Lead foot is left
elif stance == "southpaw":
step_movement = (right_ankle[0] - previous_right_ankle[0]) > 0.05 # Lead foot is right
else:
step_movement = False
stepping_jabs.append(step_movement)
else:
stepping_jabs.append(False)
# Detect if the hand returns to the initial position after the punch
if punch_started:
if stance == "orthodox" and initial_left_wrist is not None:
hand_returned.append(np.linalg.norm(np.array(left_wrist) - np.array(initial_left_wrist)) < 0.05)
elif stance == "southpaw" and initial_right_wrist is not None:
hand_returned.append(np.linalg.norm(np.array(right_wrist) - np.array(initial_right_wrist)) < 0.05)
else:
hand_returned.append(False)
else:
hand_returned.append(False)
# Detect if hips are shoulder width apart
left_shoulder = keypoints_3d[KEYPOINT_DICT['left_shoulder']]
right_shoulder = keypoints_3d[KEYPOINT_DICT['right_shoulder']]
shoulder_width = abs(left_shoulder[0] - right_shoulder[0])
hips_width = abs(left_hip[0] - right_hip[0])
hips_width_apart.append(hips_width > 0.9 * shoulder_width and hips_width < 1.1 * shoulder_width)
# Detect if the back leg is at a 45 degree angle outward (for orthodox and southpaw)
if stance == "orthodox":
right_leg_angle = np.arctan2(right_ankle[1] - right_hip[1], right_ankle[0] - right_hip[0]) * 180 / np.pi
leg_angle_correct.append(40 <= right_leg_angle <= 50)
elif stance == "southpaw":
left_leg_angle = np.arctan2(left_ankle[1] - left_hip[1], left_ankle[0] - left_hip[0]) * 180 / np.pi
leg_angle_correct.append(40 <= left_leg_angle <= 50)
else:
leg_angle_correct.append(False)
# Generate captions for all 60 frames using BLIP
captions = []
for frame in frames:
inputs = blip_processor(images=frame, return_tensors="pt")
with torch.no_grad():
caption = blip_model.generate(**inputs)
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
clip_results = []
for i, frame in enumerate(frames):
stance = stances[i]
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm, with hip rotation of {hip_rotations[i]:.2f}, arm extension of {arm_extensions[i]:.2f}, {'stepping forward' if stepping_jabs[i] else 'not stepping'}, {'guard up' if guard_up[i] else 'guard down'}, {'hand returned to initial position' if hand_returned[i] else 'hand not returned'}, {'hips shoulder width apart' if hips_width_apart[i] else 'hips not shoulder width apart'}, and {'correct leg angle' if leg_angle_correct[i] else 'incorrect leg angle'}"
text_inputs = clip_processor(text=[prompt], return_tensors="pt")
image_inputs = clip_processor(images=frame, return_tensors="pt")
with torch.no_grad():
image_features = clip_model.get_image_features(**image_inputs)
text_features = clip_model.get_text_features(**text_inputs)
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
clip_results.append(similarity.item())
# Calculate score based on CLIP results and BLIP captions
avg_clip_similarity = sum(clip_results) / len(clip_results) if clip_results else 0
guard_score = sum(guard_up) / len(guard_up) if guard_up else 0
hand_return_score = sum(hand_returned) / len(hand_returned) if hand_returned else 0
hips_width_score = sum(hips_width_apart) / len(hips_width_apart) if hips_width_apart else 0
leg_angle_score = sum(leg_angle_correct) / len(leg_angle_correct) if leg_angle_correct else 0
overall_score = (avg_clip_similarity + guard_score + hand_return_score + hips_width_score + leg_angle_score) / 5
# Scale the overall score to a range of 0 - 10
overall_score = max(0, min(overall_score * 10, 10))
# Return combined results
response = {
"movenet_results": movenet_results,
"blip_captions": captions,
"clip_similarities": clip_results,
"stances": stances,
"hip_rotations": hip_rotations,
"arm_extensions": arm_extensions,
"stepping_jabs": stepping_jabs,
"hips_width_apart": hips_width_apart,
"leg_angle_correct": leg_angle_correct,
"overall_score": overall_score,
"guard_score": guard_score,
"hand_return_score": hand_return_score,
"hips_width_score":hips_width_score,
"leg_angle_score": leg_angle_score,
}
return jsonify(response)
except Exception as e:
return jsonify({"error": str(e)}), 500
# if __name__ == '__main__':
# app.run(host='0.0.0.0', port=7860)
if __name__ == '__main__':
# Clear any cache before starting the Flask server
gc.collect()
torch.cuda.empty_cache()
# Start the Flask app
app.run(host='0.0.0.0', port=7860)