FlameF0X's picture
Update app.py
cf52a35 verified
import os
import torch
import gradio as gr
import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
import spaces
# Constants
MODEL_CONFIG = {
"G0-Release": "FlameF0X/SnowflakeCore-G0-Release",
"G0-Release-2": "FlameF0X/SnowflakeCore-G0-Release-2",
"G0-Release-2.5": "FlameF0X/SnowflakeCore-G0-Release-2.5"
}
MAX_LENGTH = 384
TEMPERATURE_DEFAULT = 0.7
TOP_P_DEFAULT = 0.9
TOP_K_DEFAULT = 40
MAX_NEW_TOKENS_DEFAULT = 256
TEMPERATURE_MIN, TEMPERATURE_MAX = 0.1, 2.0
TOP_P_MIN, TOP_P_MAX = 0.1, 1.0
TOP_K_MIN, TOP_K_MAX = 1, 100
MAX_NEW_TOKENS_MIN, MAX_NEW_TOKENS_MAX = 16, 1024
css = """
.gradio-container { background-color: #1e1e2f !important; color: #e0e0e0 !important; }
.header { background-color: #2b2b3c; padding: 20px; margin-bottom: 20px; border-radius: 10px; text-align: center; }
.header h1 { color: #66ccff; margin-bottom: 10px; }
.snowflake-icon { font-size: 24px; margin-right: 10px; }
.footer { text-align: center; margin-top: 20px; font-size: 0.9em; color: #999; }
.parameter-section { background-color: #2a2a3a; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
.parameter-section h3 { margin-top: 0; color: #66ccff; }
.example-section { background-color: #223344; padding: 15px; border-radius: 8px; margin-bottom: 15px; }
.example-section h3 { margin-top: 0; color: #66ffaa; }
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; }
"""
# Global registry - models will be loaded on-demand within GPU function
model_registry = {}
def load_model_cpu(model_id):
"""Load model on CPU only - no CUDA initialization"""
print(f"Loading model on CPU: {model_id}")
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model on CPU only
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float32,
device_map=None, # No device mapping
low_cpu_mem_usage=True
)
return model, tokenizer
@spaces.GPU
def generate_text_gpu(prompt, model_version, temperature, top_p, top_k, max_new_tokens):
"""GPU-decorated function for text generation"""
try:
# Load model if not already loaded
if model_version not in model_registry:
model_id = MODEL_CONFIG[model_version]
model, tokenizer = load_model_cpu(model_id)
model_registry[model_version] = (model, tokenizer)
model, tokenizer = model_registry[model_version]
# Move model to GPU only inside this function
if torch.cuda.is_available():
model = model.cuda()
device = "cuda"
else:
device = "cpu"
# Create pipeline inside GPU function
pipeline = TextGenerationPipeline(
model=model,
tokenizer=tokenizer,
return_full_text=False,
max_length=MAX_LENGTH,
device=device
)
outputs = pipeline(
prompt,
do_sample=temperature > 0,
temperature=temperature,
top_p=top_p,
top_k=top_k,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer.pad_token_id,
num_return_sequences=1
)
response = outputs[0]["generated_text"]
return response, None
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
return error_msg, str(e)
def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_tokens, history=None):
"""Main generation function that calls GPU function"""
if history is None:
history = []
# Add user message to history
history.append({"role": "user", "content": prompt})
try:
# Call GPU function
response, error = generate_text_gpu(
prompt, model_version, temperature, top_p, top_k, max_new_tokens
)
if error:
history.append({"role": "assistant", "content": f"[ERROR] {response}", "model": model_version})
else:
history.append({"role": "assistant", "content": response, "model": model_version})
# Format history for display
formatted_history = []
for entry in history:
prefix = "👤 User: " if entry["role"] == "user" else f"❄️ [{entry.get('model', 'Model')}]: "
formatted_history.append(f"{prefix}{entry['content']}")
return response, history, "\n\n".join(formatted_history)
except Exception as e:
error_msg = f"Error in generation pipeline: {str(e)}"
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}", "model": model_version})
return error_msg, history, str(history)
def clear_conversation():
return "", [], ""
def create_demo():
with gr.Blocks(css=css) as demo:
gr.HTML("""
<div class="header">
<h1><span class="snowflake-icon">❄️</span> SnowflakeCore Demo Inteface</h1>
<p>Experience the capabilities of the SnowflakeCore series language models</p>
</div>
""")
with gr.Column():
with gr.Row(elem_classes="model-select"):
model_version = gr.Radio(
choices=list(MODEL_CONFIG.keys()),
value=list(MODEL_CONFIG.keys())[0],
label="Select Model Version",
info="Choose which SnowflakeCore model to use"
)
chat_history_display = gr.Textbox(
value="",
label="Conversation History",
lines=10,
max_lines=30,
interactive=False
)
history_state = gr.State([])
with gr.Row():
with gr.Column(scale=4):
prompt = gr.Textbox(
placeholder="Type your message here...",
label="Your Input",
lines=2
)
with gr.Column(scale=1):
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear Conversation")
response_output = gr.Textbox(
value="",
label="Model Response",
lines=5,
max_lines=10,
interactive=False
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Column(elem_classes="parameter-section"):
with gr.Row():
with gr.Column():
temperature = gr.Slider(
minimum=TEMPERATURE_MIN, maximum=TEMPERATURE_MAX,
value=TEMPERATURE_DEFAULT, step=0.05,
label="Temperature"
)
top_p = gr.Slider(
minimum=TOP_P_MIN, maximum=TOP_P_MAX,
value=TOP_P_DEFAULT, step=0.05,
label="Top-p"
)
with gr.Column():
top_k = gr.Slider(
minimum=TOP_K_MIN, maximum=TOP_K_MAX,
value=TOP_K_DEFAULT, step=1,
label="Top-k"
)
max_new_tokens = gr.Slider(
minimum=MAX_NEW_TOKENS_MIN, maximum=MAX_NEW_TOKENS_MAX,
value=MAX_NEW_TOKENS_DEFAULT, step=8,
label="Maximum New Tokens"
)
examples = [
"Write a short story about a snowflake that comes to life.",
"Explain the concept of artificial neural networks to a 10-year-old.",
"What are some interesting applications of natural language processing?",
"Write a haiku about programming.",
"Create a dialogue between two AI researchers discussing the future of language models."
]
with gr.Accordion("Example Prompts", open=True):
with gr.Column(elem_classes="example-section"):
gr.Examples(
examples=examples,
inputs=prompt,
label="Click on an example to try it",
examples_per_page=5
)
gr.HTML(f"""
<div class="footer">
<p>Snowflake Models Demo • Created with Gradio • {datetime.datetime.now().year}</p>
</div>
""")
submit_btn.click(
fn=generate_text,
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
outputs=[response_output, history_state, chat_history_display]
)
prompt.submit(
fn=generate_text,
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
outputs=[response_output, history_state, chat_history_display]
)
clear_btn.click(
fn=clear_conversation,
inputs=[],
outputs=[prompt, history_state, chat_history_display]
)
return demo
# Initialize demo without loading models (they'll load on-demand)
print("Initializing Snowflake Models Demo...")
demo = create_demo()
if __name__ == "__main__":
demo.launch()