Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import gradio as gr | |
import datetime | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline | |
import spaces | |
# Constants | |
MODEL_CONFIG = { | |
"G0-Release": "FlameF0X/SnowflakeCore-G0-Release", | |
"G0-Release-2": "FlameF0X/SnowflakeCore-G0-Release-2", | |
"G0-Release-2.5": "FlameF0X/SnowflakeCore-G0-Release-2.5" | |
} | |
MAX_LENGTH = 384 | |
TEMPERATURE_DEFAULT = 0.7 | |
TOP_P_DEFAULT = 0.9 | |
TOP_K_DEFAULT = 40 | |
MAX_NEW_TOKENS_DEFAULT = 256 | |
TEMPERATURE_MIN, TEMPERATURE_MAX = 0.1, 2.0 | |
TOP_P_MIN, TOP_P_MAX = 0.1, 1.0 | |
TOP_K_MIN, TOP_K_MAX = 1, 100 | |
MAX_NEW_TOKENS_MIN, MAX_NEW_TOKENS_MAX = 16, 1024 | |
css = """ | |
.gradio-container { background-color: #1e1e2f !important; color: #e0e0e0 !important; } | |
.header { background-color: #2b2b3c; padding: 20px; margin-bottom: 20px; border-radius: 10px; text-align: center; } | |
.header h1 { color: #66ccff; margin-bottom: 10px; } | |
.snowflake-icon { font-size: 24px; margin-right: 10px; } | |
.footer { text-align: center; margin-top: 20px; font-size: 0.9em; color: #999; } | |
.parameter-section { background-color: #2a2a3a; padding: 15px; border-radius: 8px; margin-bottom: 15px; } | |
.parameter-section h3 { margin-top: 0; color: #66ccff; } | |
.example-section { background-color: #223344; padding: 15px; border-radius: 8px; margin-bottom: 15px; } | |
.example-section h3 { margin-top: 0; color: #66ffaa; } | |
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; } | |
""" | |
# Global registry - models will be loaded on-demand within GPU function | |
model_registry = {} | |
def load_model_cpu(model_id): | |
"""Load model on CPU only - no CUDA initialization""" | |
print(f"Loading model on CPU: {model_id}") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load model on CPU only | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float32, | |
device_map=None, # No device mapping | |
low_cpu_mem_usage=True | |
) | |
return model, tokenizer | |
def generate_text_gpu(prompt, model_version, temperature, top_p, top_k, max_new_tokens): | |
"""GPU-decorated function for text generation""" | |
try: | |
# Load model if not already loaded | |
if model_version not in model_registry: | |
model_id = MODEL_CONFIG[model_version] | |
model, tokenizer = load_model_cpu(model_id) | |
model_registry[model_version] = (model, tokenizer) | |
model, tokenizer = model_registry[model_version] | |
# Move model to GPU only inside this function | |
if torch.cuda.is_available(): | |
model = model.cuda() | |
device = "cuda" | |
else: | |
device = "cpu" | |
# Create pipeline inside GPU function | |
pipeline = TextGenerationPipeline( | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=False, | |
max_length=MAX_LENGTH, | |
device=device | |
) | |
outputs = pipeline( | |
prompt, | |
do_sample=temperature > 0, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
max_new_tokens=max_new_tokens, | |
pad_token_id=tokenizer.pad_token_id, | |
num_return_sequences=1 | |
) | |
response = outputs[0]["generated_text"] | |
return response, None | |
except Exception as e: | |
error_msg = f"Error generating response: {str(e)}" | |
return error_msg, str(e) | |
def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_tokens, history=None): | |
"""Main generation function that calls GPU function""" | |
if history is None: | |
history = [] | |
# Add user message to history | |
history.append({"role": "user", "content": prompt}) | |
try: | |
# Call GPU function | |
response, error = generate_text_gpu( | |
prompt, model_version, temperature, top_p, top_k, max_new_tokens | |
) | |
if error: | |
history.append({"role": "assistant", "content": f"[ERROR] {response}", "model": model_version}) | |
else: | |
history.append({"role": "assistant", "content": response, "model": model_version}) | |
# Format history for display | |
formatted_history = [] | |
for entry in history: | |
prefix = "👤 User: " if entry["role"] == "user" else f"❄️ [{entry.get('model', 'Model')}]: " | |
formatted_history.append(f"{prefix}{entry['content']}") | |
return response, history, "\n\n".join(formatted_history) | |
except Exception as e: | |
error_msg = f"Error in generation pipeline: {str(e)}" | |
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}", "model": model_version}) | |
return error_msg, history, str(history) | |
def clear_conversation(): | |
return "", [], "" | |
def create_demo(): | |
with gr.Blocks(css=css) as demo: | |
gr.HTML(""" | |
<div class="header"> | |
<h1><span class="snowflake-icon">❄️</span> SnowflakeCore Demo Inteface</h1> | |
<p>Experience the capabilities of the SnowflakeCore series language models</p> | |
</div> | |
""") | |
with gr.Column(): | |
with gr.Row(elem_classes="model-select"): | |
model_version = gr.Radio( | |
choices=list(MODEL_CONFIG.keys()), | |
value=list(MODEL_CONFIG.keys())[0], | |
label="Select Model Version", | |
info="Choose which SnowflakeCore model to use" | |
) | |
chat_history_display = gr.Textbox( | |
value="", | |
label="Conversation History", | |
lines=10, | |
max_lines=30, | |
interactive=False | |
) | |
history_state = gr.State([]) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
prompt = gr.Textbox( | |
placeholder="Type your message here...", | |
label="Your Input", | |
lines=2 | |
) | |
with gr.Column(scale=1): | |
submit_btn = gr.Button("Send", variant="primary") | |
clear_btn = gr.Button("Clear Conversation") | |
response_output = gr.Textbox( | |
value="", | |
label="Model Response", | |
lines=5, | |
max_lines=10, | |
interactive=False | |
) | |
with gr.Accordion("Generation Parameters", open=False): | |
with gr.Column(elem_classes="parameter-section"): | |
with gr.Row(): | |
with gr.Column(): | |
temperature = gr.Slider( | |
minimum=TEMPERATURE_MIN, maximum=TEMPERATURE_MAX, | |
value=TEMPERATURE_DEFAULT, step=0.05, | |
label="Temperature" | |
) | |
top_p = gr.Slider( | |
minimum=TOP_P_MIN, maximum=TOP_P_MAX, | |
value=TOP_P_DEFAULT, step=0.05, | |
label="Top-p" | |
) | |
with gr.Column(): | |
top_k = gr.Slider( | |
minimum=TOP_K_MIN, maximum=TOP_K_MAX, | |
value=TOP_K_DEFAULT, step=1, | |
label="Top-k" | |
) | |
max_new_tokens = gr.Slider( | |
minimum=MAX_NEW_TOKENS_MIN, maximum=MAX_NEW_TOKENS_MAX, | |
value=MAX_NEW_TOKENS_DEFAULT, step=8, | |
label="Maximum New Tokens" | |
) | |
examples = [ | |
"Write a short story about a snowflake that comes to life.", | |
"Explain the concept of artificial neural networks to a 10-year-old.", | |
"What are some interesting applications of natural language processing?", | |
"Write a haiku about programming.", | |
"Create a dialogue between two AI researchers discussing the future of language models." | |
] | |
with gr.Accordion("Example Prompts", open=True): | |
with gr.Column(elem_classes="example-section"): | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
label="Click on an example to try it", | |
examples_per_page=5 | |
) | |
gr.HTML(f""" | |
<div class="footer"> | |
<p>Snowflake Models Demo • Created with Gradio • {datetime.datetime.now().year}</p> | |
</div> | |
""") | |
submit_btn.click( | |
fn=generate_text, | |
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state], | |
outputs=[response_output, history_state, chat_history_display] | |
) | |
prompt.submit( | |
fn=generate_text, | |
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state], | |
outputs=[response_output, history_state, chat_history_display] | |
) | |
clear_btn.click( | |
fn=clear_conversation, | |
inputs=[], | |
outputs=[prompt, history_state, chat_history_display] | |
) | |
return demo | |
# Initialize demo without loading models (they'll load on-demand) | |
print("Initializing Snowflake Models Demo...") | |
demo = create_demo() | |
if __name__ == "__main__": | |
demo.launch() |