auto-analyst-backend / src /managers /session_manager.py
FireBird-Tech's picture
Update src/managers/session_manager.py
e9a833a verified
import io
import os
import time
import uuid
import logging
import pandas as pd
from typing import Dict, Any, List, Optional
from llama_index.core import Document, VectorStoreIndex
from src.utils.logger import Logger
from src.managers.user_manager import create_user, get_current_user
from src.agents.agents import auto_analyst, auto_analyst_ind
from src.agents.retrievers.retrievers import make_data
from src.managers.chat_manager import ChatManager
from dotenv import load_dotenv
load_dotenv()
# Initialize logger
logger = Logger("session_manager", see_time=False, console_log=False)
class SessionManager:
"""
Manages session-specific state, including datasets, retrievers, and AI systems.
Handles creation, retrieval, and updating of sessions.
"""
def __init__(self, styling_instructions: List[str], available_agents: Dict):
"""
Initialize session manager with styling instructions and agents
Args:
styling_instructions: List of styling instructions
available_agents: Dictionary of available agents
"""
self._sessions = {}
self._default_df = None
self._default_retrievers = None
self._default_ai_system = None
self._dataset_description = None
self._make_data = None
self._default_name = "Housing Dataset" # Default dataset name
self._dataset_description = """This dataset contains residential property information with details about pricing, physical characteristics, and amenities. The data can be used for real estate market analysis, property valuation, and understanding the relationship between house features and prices.
Key Features:
- Property prices range from 1.75M to 13.3M (currency units)
- Living areas from 1,650 to 16,200 (square units)
- Properties vary from 1-6 bedrooms and 1-4 bathrooms
- Various amenities tracked including parking, air conditioning, and hot water heating
TECHNICAL CONSIDERATIONS FOR ANALYSIS:
Numeric Columns:
- price (int): Large values suggesting currency units; range 1.75M-13.3M
- area (int): Square units measurement; range 1,650-16,200
- bedrooms (int): Discrete values 1-6
- bathrooms (int): Discrete values 1-4
- stories (int): Discrete values 1-4
- parking (int): Discrete values 0-3
Binary Categorical Columns (stored as str):
- mainroad (str): 'yes'/'no' - Consider boolean conversion
- guestroom (str): 'yes'/'no' - Consider boolean conversion
- basement (str): 'yes'/'no' - Consider boolean conversion
- hotwaterheating (str): 'yes'/'no' - Consider boolean conversion
- airconditioning (str): 'yes'/'no' - Consider boolean conversion
- prefarea (str): 'yes'/'no' - Consider boolean conversion
Other Categorical:
- furnishingstatus (str): Categories include 'furnished', 'semi-furnished' - Consider one-hot encoding
Data Handling Recommendations:
1. Binary variables should be converted to boolean or numeric (0/1) for analysis
2. Consider normalizing price and area values for certain analyses
3. Furnishing status will need categorical encoding for numerical analysis
4. No null values detected in the dataset
5. All numeric columns are properly typed as numbers (no string conversion needed)
6. Consider treating bedrooms, bathrooms, stories, and parking as categorical despite numeric storage
This dataset appears clean with consistent formatting and no missing values, making it suitable for immediate analysis with appropriate categorical encoding.
"""
self.styling_instructions = styling_instructions
self.available_agents = available_agents
self.chat_manager = ChatManager(db_url=os.getenv("DATABASE_URL"))
self.initialize_default_dataset()
def initialize_default_dataset(self):
"""Initialize the default dataset and store it"""
try:
self._default_df = pd.read_csv("Housing.csv")
self._make_data = make_data(self._default_df, self._dataset_description)
self._default_retrievers = self.initialize_retrievers(self.styling_instructions, [str(self._make_data)])
self._default_ai_system = auto_analyst(agents=list(self.available_agents.values()),
retrievers=self._default_retrievers)
except Exception as e:
logger.log_message(f"Error initializing default dataset: {str(e)}", level=logging.ERROR)
raise e
def initialize_retrievers(self, styling_instructions: List[str], doc: List[str]):
"""
Initialize retrievers for styling and data
Args:
styling_instructions: List of styling instructions
doc: List of document strings
Returns:
Dictionary containing style_index and dataframe_index
"""
try:
style_index = VectorStoreIndex.from_documents([Document(text=x) for x in styling_instructions])
data_index = VectorStoreIndex.from_documents([Document(text=x) for x in doc])
return {"style_index": style_index, "dataframe_index": data_index}
except Exception as e:
logger.log_message(f"Error initializing retrievers: {str(e)}", level=logging.ERROR)
raise e
def get_session_state(self, session_id: str) -> Dict[str, Any]:
"""
Get or create session-specific state
Args:
session_id: The session identifier
Returns:
Dictionary containing session state
"""
# Use the global model config from app_state when available
# Get the most up-to-date model config
if hasattr(self, '_app_model_config') and self._app_model_config:
default_model_config = self._app_model_config
else:
default_model_config = {
"provider": os.getenv("MODEL_PROVIDER", "openai"),
"model": os.getenv("MODEL_NAME", "gpt-4o-mini"),
"api_key": os.getenv("OPENAI_API_KEY"),
"temperature": float(os.getenv("TEMPERATURE", 1.0)),
"max_tokens": int(os.getenv("MAX_TOKENS", 6000))
}
if session_id not in self._sessions:
# Check if we need to create a brand new session
logger.log_message(f"Creating new session state for session_id: {session_id}", level=logging.INFO)
# Initialize with default state
self._sessions[session_id] = {
"current_df": self._default_df.copy() if self._default_df is not None else None,
"retrievers": self._default_retrievers,
"ai_system": self._default_ai_system,
"make_data": self._make_data,
"description": self._dataset_description,
"name": self._default_name,
"model_config": default_model_config,
"creation_time": time.time()
}
else:
# Verify dataset integrity in existing session
session = self._sessions[session_id]
# Always update model_config to match global settings
session["model_config"] = default_model_config
# If dataset is somehow missing, restore it
if "current_df" not in session or session["current_df"] is None:
logger.log_message(f"Restoring missing dataset for session {session_id}", level=logging.WARNING)
session["current_df"] = self._default_df.copy() if self._default_df is not None else None
session["retrievers"] = self._default_retrievers
session["ai_system"] = self._default_ai_system
session["description"] = self._dataset_description
session["name"] = self._default_name
# Ensure we have the basic required fields
if "name" not in session:
session["name"] = self._default_name
if "description" not in session:
session["description"] = self._dataset_description
# Update last accessed time
session["last_accessed"] = time.time()
return self._sessions[session_id]
def clear_session_state(self, session_id: str):
"""
Clear session-specific state
Args:
session_id: The session identifier
"""
if session_id in self._sessions:
del self._sessions[session_id]
def update_session_dataset(self, session_id: str, df, name: str, desc: str):
"""
Update dataset for a specific session
Args:
session_id: The session identifier
df: Pandas DataFrame containing the dataset
name: Name of the dataset
desc: Description of the dataset
"""
try:
self._make_data = make_data(df, desc)
retrievers = self.initialize_retrievers(self.styling_instructions, [str(self._make_data)])
ai_system = auto_analyst(agents=list(self.available_agents.values()), retrievers=retrievers)
# Get default model config for new sessions
default_model_config = {
"provider": os.getenv("MODEL_PROVIDER", "openai"),
"model": os.getenv("MODEL_NAME", "gpt-4o-mini"),
"api_key": os.getenv("OPENAI_API_KEY"),
"temperature": float(os.getenv("TEMPERATURE", 1.0)),
"max_tokens": int(os.getenv("MAX_TOKENS", 6000))
}
# Create a completely fresh session state for the new dataset
# This ensures no remnants of the previous dataset remain
session_state = {
"current_df": df,
"retrievers": retrievers,
"ai_system": ai_system,
"make_data": self._make_data,
"description": desc,
"name": name,
"model_config": default_model_config, # Initialize with default
}
# Preserve user_id, chat_id, and model_config if they exist in the current session
if session_id in self._sessions:
if "user_id" in self._sessions[session_id]:
session_state["user_id"] = self._sessions[session_id]["user_id"]
if "chat_id" in self._sessions[session_id]:
session_state["chat_id"] = self._sessions[session_id]["chat_id"]
if "model_config" in self._sessions[session_id]:
# Preserve the user's model configuration
session_state["model_config"] = self._sessions[session_id]["model_config"]
# Replace the entire session with the new state
self._sessions[session_id] = session_state
logger.log_message(f"Updated session {session_id} with completely fresh dataset state: {name}", level=logging.INFO)
except Exception as e:
logger.log_message(f"Error updating dataset for session {session_id}: {str(e)}", level=logging.ERROR)
raise e
def reset_session_to_default(self, session_id: str):
"""
Reset a session to use the default dataset
Args:
session_id: The session identifier
"""
try:
# Get default model config from environment
default_model_config = {
"provider": os.getenv("MODEL_PROVIDER", "openai"),
"model": os.getenv("MODEL_NAME", "gpt-4o-mini"),
"api_key": os.getenv("OPENAI_API_KEY"),
"temperature": float(os.getenv("TEMPERATURE", 1.0)),
"max_tokens": int(os.getenv("MAX_TOKENS", 6000))
}
# Clear any custom data associated with the session first
if session_id in self._sessions:
del self._sessions[session_id]
logger.log_message(f"Cleared existing state for session {session_id} before reset.", level=logging.INFO)
# Initialize with default state
self._sessions[session_id] = {
"current_df": self._default_df.copy(), # Use a copy
"retrievers": self._default_retrievers,
"ai_system": self._default_ai_system,
"description": self._dataset_description,
"name": self._default_name, # Explicitly set the default name
"make_data": None, # Clear any custom make_data
"model_config": default_model_config # Initialize with default model config
}
logger.log_message(f"Reset session {session_id} to default dataset: {self._default_name}", level=logging.INFO)
except Exception as e:
logger.log_message(f"Error resetting session {session_id}: {str(e)}", level=logging.ERROR)
raise e
def set_session_user(self, session_id: str, user_id: int, chat_id: int = None):
"""
Associate a user with a session
Args:
session_id: The session identifier
user_id: The authenticated user ID
chat_id: Optional chat ID for tracking conversation
Returns:
Updated session state dictionary
"""
# Ensure we have a session state for this session ID
if session_id not in self._sessions:
self.get_session_state(session_id) # Initialize with defaults
# Store user ID
self._sessions[session_id]["user_id"] = user_id
# Generate or use chat ID
if chat_id:
chat_id_to_use = chat_id
else:
# Check if chat_id already exists
if "chat_id" not in self._sessions[session_id] or not self._sessions[session_id]["chat_id"]:
# Use current timestamp + random number to generate a more readable ID
import random
chat_id_to_use = int(time.time() * 1000) % 1000000 + random.randint(1, 999)
else:
chat_id_to_use = self._sessions[session_id]["chat_id"]
# Store chat ID
self._sessions[session_id]["chat_id"] = chat_id_to_use
# Make sure this data gets saved
logger.log_message(f"Associated session {session_id} with user_id={user_id}, chat_id={chat_id_to_use}", level=logging.INFO)
# Return the updated session data
return self._sessions[session_id]
async def get_session_id(request, session_manager):
"""
Get the session ID from the request, create/associate a user if needed
Args:
request: FastAPI Request object
session_manager: SessionManager instance
Returns:
Session ID string
"""
# First try to get from query params
session_id = request.query_params.get("session_id")
# If not in query params, try to get from headers
if not session_id:
session_id = request.headers.get("X-Session-ID")
# If still not found, generate a new one
if not session_id:
session_id = str(uuid.uuid4())
# Get or create the session state
session_state = session_manager.get_session_state(session_id)
# First, check if we already have a user associated with this session
if session_state.get("user_id") is not None:
return session_id
# Next, try to get authenticated user using the API key
current_user = await get_current_user(request)
if current_user:
# Use the authenticated user instead of creating a guest
session_manager.set_session_user(
session_id=session_id,
user_id=current_user.user_id
)
logger.log_message(f"Associated session {session_id} with authenticated user_id {current_user.user_id}", level=logging.INFO)
return session_id
# Check if a user_id was provided in the request params
user_id_param = request.query_params.get("user_id")
if user_id_param:
try:
user_id = int(user_id_param)
session_manager.set_session_user(session_id=session_id, user_id=user_id)
logger.log_message(f"Associated session {session_id} with provided user_id {user_id}", level=logging.INFO)
return session_id
except (ValueError, TypeError):
logger.log_message(f"Invalid user_id in query params: {user_id_param}", level=logging.WARNING)
# Only create a guest user if no authenticated user is found
try:
# Create a guest user for this session
guest_username = f"guest_{session_id[:8]}"
guest_email = f"{guest_username}@example.com"
# Create the user
user = create_user(username=guest_username, email=guest_email)
user_id = user.user_id
logger.log_message(f"Created guest user {user_id} for session {session_id}", level=logging.INFO)
# Associate the user with this session
session_manager.set_session_user(
session_id=session_id,
user_id=user_id
)
except Exception as e:
logger.log_message(f"Error auto-creating user for session {session_id}: {str(e)}", level=logging.ERROR)
return session_id