Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import io | |
| import os | |
| import time | |
| import uuid | |
| import logging | |
| import pandas as pd | |
| from typing import Dict, Any, List | |
| from fastapi import HTTPException | |
| from llama_index.core import Document, VectorStoreIndex | |
| from src.utils.logger import Logger | |
| from src.managers.user_manager import get_current_user | |
| from src.agents.agents import auto_analyst, dataset_description_agent, data_context_gen | |
| from src.agents.retrievers.retrievers import make_data | |
| from src.managers.chat_manager import ChatManager | |
| from src.utils.model_registry import mid_lm | |
| from dotenv import load_dotenv | |
| import duckdb | |
| import dspy | |
| from src.utils.dataset_description_generator import generate_dataset_description | |
| from fastapi import Request | |
| load_dotenv() | |
| # Initialize logger | |
| logger = Logger("session_manager", see_time=False, console_log=False) | |
| # Helper to clamp temperature to valid range | |
| def _get_clamped_temperature(): | |
| return min(1.0, max(0.0, float(os.getenv("TEMPERATURE", "1.0")))) | |
| class SessionManager: | |
| """ | |
| Manages session-specific state, including datasets, retrievers, and AI systems. | |
| Handles creation, retrieval, and updating of sessions. | |
| """ | |
| def __init__(self, styling_instructions: List[str], available_agents: Dict): | |
| """ | |
| Initialize SessionManager with styling instructions and available agents | |
| Args: | |
| styling_instructions: List of styling instructions for visualization | |
| available_agents: Dictionary of available agents (deprecated - agents now loaded from DB) | |
| """ | |
| self.styling_instructions = styling_instructions | |
| self._sessions = {} | |
| self._default_df = None | |
| self._default_retrievers = None | |
| self._default_ai_system = None | |
| self._make_data = None | |
| # Initialize chat manager | |
| self._default_name = "Housing.csv" | |
| self._dataset_description = """This dataset contains residential property information with details about pricing, physical characteristics, and amenities. The data can be used for real estate market analysis, property valuation, and understanding the relationship between house features and prices. | |
| Key Features: | |
| - Property prices range from 1.75M to 13.3M (currency units) | |
| - Living areas from 1,650 to 16,200 (square units) | |
| - Properties vary from 1-6 bedrooms and 1-4 bathrooms | |
| - Various amenities tracked including parking, air conditioning, and hot water heating | |
| TECHNICAL CONSIDERATIONS FOR ANALYSIS: | |
| Numeric Columns: | |
| - price (int): Large values suggesting currency units; range 1.75M-13.3M | |
| - area (int): Square units measurement; range 1,650-16,200 | |
| - bedrooms (int): Discrete values 1-6 | |
| - bathrooms (int): Discrete values 1-4 | |
| - stories (int): Discrete values 1-4 | |
| - parking (int): Discrete values 0-3 | |
| Binary Categorical Columns (stored as str): | |
| - mainroad (str): 'yes'/'no' - Consider boolean conversion | |
| - guestroom (str): 'yes'/'no' - Consider boolean conversion | |
| - basement (str): 'yes'/'no' - Consider boolean conversion | |
| - hotwaterheating (str): 'yes'/'no' - Consider boolean conversion | |
| - airconditioning (str): 'yes'/'no' - Consider boolean conversion | |
| - prefarea (str): 'yes'/'no' - Consider boolean conversion | |
| Other Categorical: | |
| - furnishingstatus (str): Categories include 'furnished', 'semi-furnished' - Consider one-hot encoding | |
| Data Handling Recommendations: | |
| 1. Binary variables should be converted to boolean or numeric (0/1) for analysis | |
| 2. Consider normalizing price and area values for certain analyses | |
| 3. Furnishing status will need categorical encoding for numerical analysis | |
| 4. No null values detected in the dataset | |
| 5. All numeric columns are properly typed as numbers (no string conversion needed) | |
| 6. Consider treating bedrooms, bathrooms, stories, and parking as categorical despite numeric storage | |
| This dataset appears clean with consistent formatting and no missing values, making it suitable for immediate analysis with appropriate categorical encoding. | |
| """ | |
| self.available_agents = available_agents | |
| self.chat_manager = ChatManager(db_url=os.getenv("DATABASE_URL")) | |
| self.initialize_default_dataset() | |
| def initialize_default_dataset(self): | |
| """Initialize the default dataset and store it""" | |
| try: | |
| self._default_df = pd.read_csv("Housing.csv") | |
| self._make_data = {'dataset_python_name':"this dataset is loaded as `df`","description":self._dataset_description} | |
| self._default_retrievers = self.initialize_retrievers(self.styling_instructions, [str(self._make_data)]) | |
| # Create default AI system - agents will be loaded from database | |
| self._default_ai_system = auto_analyst(agents=[], retrievers=self._default_retrievers) | |
| except Exception as e: | |
| logger.log_message(f"Error initializing default dataset: {str(e)}", level=logging.ERROR) | |
| raise e | |
| def initialize_retrievers(self,styling_instructions: List[str], doc: List[str]): | |
| try: | |
| style_index = VectorStoreIndex.from_documents([Document(text=x) for x in styling_instructions]) | |
| return {"style_index": style_index, "dataframe_index": doc} | |
| except Exception as e: | |
| logger.log_message(f"Error initializing retrievers: {str(e)}", level=logging.ERROR) | |
| raise e | |
| def get_session_state(self, session_id: str) -> Dict[str, Any]: | |
| """ | |
| Get or create session-specific state | |
| Args: | |
| session_id: The session identifier | |
| Returns: | |
| Dictionary containing session state | |
| """ | |
| # Use the global model config from app_state when available | |
| # Get the most up-to-date model config | |
| if hasattr(self, '_app_model_config') and self._app_model_config: | |
| default_model_config = self._app_model_config | |
| else: | |
| default_model_config = { | |
| "provider": os.getenv("MODEL_PROVIDER", "anthropic"), | |
| "model": os.getenv("MODEL_NAME", "claude-3-5-sonnet-latest"), | |
| "api_key": os.getenv("ANTHROPIC_API_KEY"), | |
| "temperature": _get_clamped_temperature(), | |
| "max_tokens": int(os.getenv("MAX_TOKENS", 6000)) | |
| } | |
| if session_id not in self._sessions: | |
| # Check if we need to create a brand new session | |
| logger.log_message(f"Creating new session state for session_id: {session_id}", level=logging.INFO) | |
| # Initialize DuckDB connection for this session | |
| # Initialize with default state | |
| self._sessions[session_id] = { | |
| "datasets": {"df":self._default_df.copy() if self._default_df is not None else None}, | |
| "dataset_names": ["df"], | |
| "retrievers": self._default_retrievers, | |
| "ai_system": self._default_ai_system, | |
| "make_data": self._make_data, | |
| "description": self._dataset_description, | |
| "name": self._default_name, | |
| "model_config": default_model_config, | |
| "creation_time": time.time(), | |
| "duckdb_conn": None, | |
| } | |
| else: | |
| # Verify dataset integrity in existing session | |
| session = self._sessions[session_id] | |
| # Always update model_config to match global settings | |
| session["model_config"] = default_model_config | |
| # If dataset is somehow missing, restore it | |
| if "datasets" not in session or session["datasets"] is None: | |
| logger.log_message(f"Restoring missing dataset for session {session_id}", level=logging.WARNING) | |
| session["datasets"] = {"df":self._default_df.copy() if self._default_df is not None else None} | |
| session["retrievers"] = self._default_retrievers | |
| session["ai_system"] = self._default_ai_system | |
| session["description"] = self._dataset_description | |
| session["name"] = self._default_name | |
| # Ensure we have the basic required fields | |
| if "name" not in session: | |
| session["name"] = self._default_name | |
| if "description" not in session: | |
| session["description"] = self._dataset_description | |
| # Update last accessed time | |
| session["last_accessed"] = time.time() | |
| return self._sessions[session_id] | |
| def update_session_dataset(self, session_id: str, datasets, names, desc: str, pre_generated=False): | |
| """ | |
| Update session with new dataset and optionally auto-generate description | |
| """ | |
| try: | |
| # Get default model config for new sessions | |
| default_model_config = { | |
| "provider": os.getenv("MODEL_PROVIDER", "anthropic"), | |
| "model": os.getenv("MODEL_NAME", "claude-3-5-sonnet-latest"), | |
| "api_key": os.getenv("ANTHROPIC_API_KEY"), | |
| "temperature": _get_clamped_temperature(), | |
| "max_tokens": int(os.getenv("MAX_TOKENS", 6000)) | |
| } | |
| # Get or create DuckDB connection for this session | |
| # Register the new dataset in DuckDB | |
| # Auto-generate description if we have datasets | |
| if datasets and pre_generated==False: | |
| try: | |
| generated_desc = generate_dataset_description(datasets, desc, names) | |
| desc = generated_desc # No need to format again since it's already formatted | |
| logger.log_message(f"Auto-generated description for session {session_id}", level=logging.INFO) | |
| except Exception as e: | |
| logger.log_message(f"Failed to auto-generate description: {str(e)}", level=logging.WARNING) | |
| # Keep the original description if generation fails | |
| pass | |
| # Initialize retrievers and AI system BEFORE creating session_state | |
| # Update make_data with the description | |
| self._make_data = {'description': desc} | |
| retrievers = self.initialize_retrievers(self.styling_instructions, [str(self._make_data)]) | |
| # Check if session has a user_id to create user-specific AI system | |
| current_user_id = None | |
| if session_id in self._sessions and "user_id" in self._sessions[session_id]: | |
| current_user_id = self._sessions[session_id]["user_id"] | |
| ai_system = self.create_ai_system_for_user(retrievers, current_user_id) | |
| # Create a completely fresh session state for the new dataset | |
| session_state = { | |
| "datasets": datasets, | |
| "dataset_names": names, | |
| "retrievers": retrievers, # Now retrievers is defined | |
| "ai_system": ai_system, # Now ai_system is defined | |
| "make_data": self._make_data, | |
| "description": desc, | |
| "name": names[0], | |
| "duckdb_conn": None, | |
| "model_config": default_model_config, | |
| } | |
| # Preserve user_id, chat_id, and model_config if they exist in the current session | |
| if session_id in self._sessions: | |
| if "user_id" in self._sessions[session_id]: | |
| session_state["user_id"] = self._sessions[session_id]["user_id"] | |
| if "chat_id" in self._sessions[session_id]: | |
| session_state["chat_id"] = self._sessions[session_id]["chat_id"] | |
| if "model_config" in self._sessions[session_id]: | |
| session_state["model_config"] = self._sessions[session_id]["model_config"] | |
| # Replace the entire session with the new state | |
| self._sessions[session_id] = session_state | |
| logger.log_message(f"Updated session {session_id} with completely fresh dataset state: {str(names)}", level=logging.INFO) | |
| except Exception as e: | |
| logger.log_message(f"Error updating dataset for session {session_id}: {str(e)}", level=logging.ERROR) | |
| raise e | |
| def reset_session_to_default(self, session_id: str): | |
| """ | |
| Reset a session to use the default dataset | |
| Args: | |
| session_id: The session identifier | |
| """ | |
| try: | |
| # Get default model config from environment | |
| default_model_config = { | |
| "provider": os.getenv("MODEL_PROVIDER", "anthropic"), | |
| "model": os.getenv("MODEL_NAME", "claude-3-5-sonnet-latest"), | |
| "api_key": os.getenv("ANTHROPIC_API_KEY"), | |
| "temperature": _get_clamped_temperature(), | |
| "max_tokens": int(os.getenv("MAX_TOKENS", 6000)) | |
| } | |
| # Clear any custom data associated with the session first | |
| if session_id in self._sessions: | |
| del self._sessions[session_id] | |
| logger.log_message(f"Cleared existing state for session {session_id} before reset.", level=logging.INFO) | |
| # Create new DuckDB connection for default session | |
| # Initialize with default state | |
| self._sessions[session_id] = { | |
| "datasets": {'df':self._default_df.copy()}, | |
| "dataset_names": ["df"], # Use a copy | |
| "retrievers": self._default_retrievers, | |
| "ai_system": self._default_ai_system, | |
| "description": self._dataset_description, | |
| "name": self._default_name, # Explicitly set the default name | |
| "make_data": None, # Clear any custom make_data | |
| "model_config": default_model_config, # Initialize with default model config | |
| "duckdb_conn": None, # Create new DuckDB connection | |
| } | |
| logger.log_message(f"Reset session {session_id} to default dataset: {self._default_name}", level=logging.INFO) | |
| except Exception as e: | |
| logger.log_message(f"Error resetting session {session_id}: {str(e)}", level=logging.ERROR) | |
| raise e | |
| def create_ai_system_for_user(self, retrievers, user_id=None): | |
| """ | |
| Create an AI system with user-specific agents (including custom agents) | |
| Args: | |
| retrievers: The retrievers for the AI system | |
| user_id: Optional user ID to load custom agents for | |
| Returns: | |
| An auto_analyst instance with all available agents (standard + custom) | |
| """ | |
| try: | |
| if user_id: | |
| # Import here to avoid circular imports | |
| from src.db.init_db import session_factory | |
| # Create a database session | |
| db_session = session_factory() | |
| try: | |
| # Create AI system with user context to load custom agents | |
| ai_system = auto_analyst( | |
| agents=[], | |
| retrievers=retrievers, | |
| user_id=user_id, | |
| db_session=db_session | |
| ) | |
| logger.log_message(f"Created AI system for user {user_id}", level=logging.INFO) | |
| return ai_system | |
| finally: | |
| db_session.close() | |
| else: | |
| # Create standard AI system without custom agents | |
| return auto_analyst(agents=[], retrievers=retrievers) | |
| except Exception as e: | |
| logger.log_message(f"Error creating AI system for user {user_id}: {str(e)}", level=logging.ERROR) | |
| # Fallback to standard AI system | |
| return auto_analyst(agents=[], retrievers=retrievers) | |
| def set_default_lm_for_user(self, session_id: str, user_id: int = None): | |
| """ | |
| Set the default language model for a user upon signin using MODEL_OBJECTS. | |
| Args: | |
| session_id: The session identifier | |
| user_id: The authenticated user ID (optional) | |
| Returns: | |
| Dictionary containing the default model configuration | |
| """ | |
| try: | |
| # Import MODEL_OBJECTS directly | |
| from src.utils.model_registry import MODEL_OBJECTS | |
| # Set Claude Sonnet 3.7 as default model | |
| default_model_name = "claude-3-7-sonnet-latest" | |
| # Ensure the model exists in MODEL_OBJECTS | |
| if default_model_name not in MODEL_OBJECTS: | |
| logger.log_message(f"Default model '{default_model_name}' not found in MODEL_OBJECTS, using gpt-5-mini", level=logging.WARNING) | |
| default_model_name = "gpt-5-mini" | |
| # Get the model object directly from MODEL_OBJECTS | |
| model_object = MODEL_OBJECTS[default_model_name] | |
| # Determine provider from model name | |
| provider = "anthropic" # Claude models use Anthropic | |
| # Create default model configuration | |
| default_model_config = { | |
| "provider": provider, | |
| "model": default_model_name, | |
| "api_key": os.getenv(f"{provider.upper()}_API_KEY"), | |
| "temperature": getattr(model_object, 'kwargs', {}).get('temperature', 0.7), | |
| "max_tokens": getattr(model_object, 'kwargs', {}).get('max_tokens', 4000) | |
| } | |
| # Ensure we have a session state for this session ID | |
| if session_id not in self._sessions: | |
| self.get_session_state(session_id) | |
| # Set the default model configuration in session state | |
| self._sessions[session_id]["model_config"] = default_model_config | |
| # Also update the app-level model config if available | |
| if hasattr(self, '_app_model_config'): | |
| self._app_model_config.update(default_model_config) | |
| logger.log_message(f"Set default LM '{default_model_name}' for session {session_id} (user: {user_id})", level=logging.INFO) | |
| return { | |
| "status": "success", | |
| "model_config": default_model_config, | |
| "message": f"Default model '{default_model_name}' set successfully" | |
| } | |
| except Exception as e: | |
| logger.log_message(f"Error setting default LM for user {user_id}: {str(e)}", level=logging.ERROR) | |
| # Return fallback configuration | |
| return { | |
| "status": "error", | |
| "model_config": { | |
| "provider": "anthropic", | |
| "model": "claude-3-7-sonnet-latest", | |
| "temperature": 0.7, | |
| "max_tokens": 4000 | |
| }, | |
| "message": f"Failed to set default model, using fallback: {str(e)}" | |
| } | |
| def set_session_user(self, session_id: str, user_id: int, chat_id: int = None): | |
| """ | |
| Associate a user with a session | |
| Args: | |
| session_id: The session identifier | |
| user_id: The authenticated user ID | |
| chat_id: Optional chat ID for tracking conversation | |
| Returns: | |
| Updated session state dictionary | |
| """ | |
| # Ensure we have a session state for this session ID | |
| if session_id not in self._sessions: | |
| self.get_session_state(session_id) # Initialize with defaults | |
| # Store user ID | |
| self._sessions[session_id]["user_id"] = user_id | |
| # Set default LM for user upon signin | |
| self.set_default_lm_for_user(session_id, user_id) | |
| # Generate or use chat ID | |
| if chat_id: | |
| chat_id_to_use = chat_id | |
| else: | |
| # Check if chat_id already exists | |
| if "chat_id" not in self._sessions[session_id] or not self._sessions[session_id]["chat_id"]: | |
| # Use current timestamp + random number to generate a more readable ID | |
| import random | |
| chat_id_to_use = int(time.time() * 1000) % 1000000 + random.randint(1, 999) | |
| else: | |
| chat_id_to_use = self._sessions[session_id]["chat_id"] | |
| # Store chat ID | |
| self._sessions[session_id]["chat_id"] = chat_id_to_use | |
| # Recreate AI system with user context to load custom agents | |
| try: | |
| session_retrievers = self._sessions[session_id]["retrievers"] | |
| user_ai_system = self.create_ai_system_for_user(session_retrievers, user_id) | |
| self._sessions[session_id]["ai_system"] = user_ai_system | |
| logger.log_message(f"Updated AI system for session {session_id} with user {user_id}", level=logging.INFO) | |
| except Exception as e: | |
| logger.log_message(f"Error updating AI system for user {user_id}: {str(e)}", level=logging.ERROR) | |
| # Continue with existing AI system if update fails | |
| # Make sure this data gets saved | |
| logger.log_message(f"Associated session {session_id} with user {user_id}, chat_id: {chat_id_to_use}", level=logging.INFO) | |
| # Return the updated session data | |
| return self._sessions[session_id] | |
| async def get_session_id(request: Request, session_manager): | |
| """ | |
| Get or create a session ID from the request | |
| """ | |
| # Debug: Log all headers | |
| logger.log_message(f"π ALL REQUEST HEADERS: {dict(request.headers)}", level=logging.DEBUG) | |
| # Try to get session ID from headers FIRST (primary method) | |
| session_id = request.headers.get("X-Session-ID") | |
| logger.log_message(f"π Session ID from X-Session-ID header: {session_id}", level=logging.DEBUG) | |
| # If not in headers, try query parameters (fallback for backward compatibility) | |
| if not session_id: | |
| session_id = request.query_params.get("session_id") | |
| logger.log_message(f"π Session ID from query params: {session_id}", level=logging.DEBUG) | |
| logger.log_message(f"π Final session_id before validation: '{session_id}' (type: {type(session_id)})", level=logging.DEBUG) | |
| # STOP auto-generating sessions | |
| if not session_id: | |
| logger.log_message(f"β No session ID found in request", level=logging.ERROR) | |
| raise HTTPException(status_code=400, detail="Session ID required") | |
| else: | |
| logger.log_message(f"β Using existing session ID: {session_id}", level=logging.INFO) | |
| # Get or create the session state | |
| session_state = session_manager.get_session_state(session_id) | |
| # First, check if we already have a user associated with this session | |
| if session_state.get("user_id") is not None: | |
| return session_id | |
| # Next, try to get authenticated user using the API key | |
| current_user = await get_current_user(request) | |
| if current_user: | |
| # Use the authenticated user instead of creating a guest | |
| session_manager.set_session_user( | |
| session_id=session_id, | |
| user_id=current_user.user_id | |
| ) | |
| logger.log_message(f"Associated session {session_id} with authenticated user_id {current_user.user_id}", level=logging.INFO) | |
| return session_id | |
| # Check if a user_id was provided in the request params | |
| user_id_param = request.query_params.get("user_id") | |
| if user_id_param: | |
| try: | |
| user_id = int(user_id_param) | |
| session_manager.set_session_user(session_id=session_id, user_id=user_id) | |
| logger.log_message(f"Associated session {session_id} with provided user_id {user_id}", level=logging.INFO) | |
| return session_id | |
| except (ValueError, TypeError): | |
| logger.log_message(f"Invalid user_id in query params: {user_id_param}", level=logging.WARNING) | |
| # No user was found or created - just return the session ID without associating a user | |
| logger.log_message(f"No authenticated user found for session {session_id}, continuing without user association", level=logging.INFO) | |
| return session_id |