Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import io | |
import os | |
import time | |
import uuid | |
import logging | |
import pandas as pd | |
from typing import Dict, Any, List | |
from llama_index.core import Document, VectorStoreIndex | |
from src.utils.logger import Logger | |
from src.managers.user_manager import get_current_user | |
from src.agents.agents import auto_analyst | |
from src.agents.retrievers.retrievers import make_data | |
from src.managers.chat_manager import ChatManager | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Initialize logger | |
logger = Logger("session_manager", see_time=False, console_log=False) | |
class SessionManager: | |
""" | |
Manages session-specific state, including datasets, retrievers, and AI systems. | |
Handles creation, retrieval, and updating of sessions. | |
""" | |
def __init__(self, styling_instructions: List[str], available_agents: Dict): | |
""" | |
Initialize SessionManager with styling instructions and available agents | |
Args: | |
styling_instructions: List of styling instructions for visualization | |
available_agents: Dictionary of available agents (deprecated - agents now loaded from DB) | |
""" | |
self.styling_instructions = styling_instructions | |
self._sessions = {} | |
self._default_df = None | |
self._default_retrievers = None | |
self._default_ai_system = None | |
self._make_data = None | |
# Initialize chat manager | |
self._dataset_description = "Housing Dataset" | |
self._default_name = "Housing.csv" | |
self._dataset_description = """This dataset contains residential property information with details about pricing, physical characteristics, and amenities. The data can be used for real estate market analysis, property valuation, and understanding the relationship between house features and prices. | |
Key Features: | |
- Property prices range from 1.75M to 13.3M (currency units) | |
- Living areas from 1,650 to 16,200 (square units) | |
- Properties vary from 1-6 bedrooms and 1-4 bathrooms | |
- Various amenities tracked including parking, air conditioning, and hot water heating | |
TECHNICAL CONSIDERATIONS FOR ANALYSIS: | |
Numeric Columns: | |
- price (int): Large values suggesting currency units; range 1.75M-13.3M | |
- area (int): Square units measurement; range 1,650-16,200 | |
- bedrooms (int): Discrete values 1-6 | |
- bathrooms (int): Discrete values 1-4 | |
- stories (int): Discrete values 1-4 | |
- parking (int): Discrete values 0-3 | |
Binary Categorical Columns (stored as str): | |
- mainroad (str): 'yes'/'no' - Consider boolean conversion | |
- guestroom (str): 'yes'/'no' - Consider boolean conversion | |
- basement (str): 'yes'/'no' - Consider boolean conversion | |
- hotwaterheating (str): 'yes'/'no' - Consider boolean conversion | |
- airconditioning (str): 'yes'/'no' - Consider boolean conversion | |
- prefarea (str): 'yes'/'no' - Consider boolean conversion | |
Other Categorical: | |
- furnishingstatus (str): Categories include 'furnished', 'semi-furnished' - Consider one-hot encoding | |
Data Handling Recommendations: | |
1. Binary variables should be converted to boolean or numeric (0/1) for analysis | |
2. Consider normalizing price and area values for certain analyses | |
3. Furnishing status will need categorical encoding for numerical analysis | |
4. No null values detected in the dataset | |
5. All numeric columns are properly typed as numbers (no string conversion needed) | |
6. Consider treating bedrooms, bathrooms, stories, and parking as categorical despite numeric storage | |
This dataset appears clean with consistent formatting and no missing values, making it suitable for immediate analysis with appropriate categorical encoding. | |
""" | |
self.styling_instructions = styling_instructions | |
self.available_agents = available_agents | |
self.chat_manager = ChatManager(db_url=os.getenv("DATABASE_URL")) | |
self.initialize_default_dataset() | |
def initialize_default_dataset(self): | |
"""Initialize the default dataset and store it""" | |
try: | |
self._default_df = pd.read_csv("Housing.csv") | |
self._make_data = make_data(self._default_df, self._dataset_description) | |
self._default_retrievers = self.initialize_retrievers(self.styling_instructions, [str(self._make_data)]) | |
# Create default AI system - agents will be loaded from database | |
self._default_ai_system = auto_analyst(agents=[], retrievers=self._default_retrievers) | |
except Exception as e: | |
logger.log_message(f"Error initializing default dataset: {str(e)}", level=logging.ERROR) | |
raise e | |
def initialize_retrievers(self, styling_instructions: List[str], doc: List[str]): | |
""" | |
Initialize retrievers for styling and data | |
Args: | |
styling_instructions: List of styling instructions | |
doc: List of document strings | |
Returns: | |
Dictionary containing style_index and dataframe_index | |
""" | |
try: | |
style_index = VectorStoreIndex.from_documents([Document(text=x) for x in styling_instructions]) | |
data_index = VectorStoreIndex.from_documents([Document(text=x) for x in doc]) | |
return {"style_index": style_index, "dataframe_index": data_index} | |
except Exception as e: | |
logger.log_message(f"Error initializing retrievers: {str(e)}", level=logging.ERROR) | |
raise e | |
def get_session_state(self, session_id: str) -> Dict[str, Any]: | |
""" | |
Get or create session-specific state | |
Args: | |
session_id: The session identifier | |
Returns: | |
Dictionary containing session state | |
""" | |
# Use the global model config from app_state when available | |
# Get the most up-to-date model config | |
if hasattr(self, '_app_model_config') and self._app_model_config: | |
default_model_config = self._app_model_config | |
else: | |
default_model_config = { | |
"provider": os.getenv("MODEL_PROVIDER", "openai"), | |
"model": os.getenv("MODEL_NAME", "gpt-4o-mini"), | |
"api_key": os.getenv("OPENAI_API_KEY"), | |
"temperature": float(os.getenv("TEMPERATURE", 1.0)), | |
"max_tokens": int(os.getenv("MAX_TOKENS", 6000)) | |
} | |
if session_id not in self._sessions: | |
# Check if we need to create a brand new session | |
logger.log_message(f"Creating new session state for session_id: {session_id}", level=logging.INFO) | |
# Initialize with default state | |
self._sessions[session_id] = { | |
"current_df": self._default_df.copy() if self._default_df is not None else None, | |
"retrievers": self._default_retrievers, | |
"ai_system": self._default_ai_system, | |
"make_data": self._make_data, | |
"description": self._dataset_description, | |
"name": self._default_name, | |
"model_config": default_model_config, | |
"creation_time": time.time() | |
} | |
else: | |
# Verify dataset integrity in existing session | |
session = self._sessions[session_id] | |
# Always update model_config to match global settings | |
session["model_config"] = default_model_config | |
# If dataset is somehow missing, restore it | |
if "current_df" not in session or session["current_df"] is None: | |
logger.log_message(f"Restoring missing dataset for session {session_id}", level=logging.WARNING) | |
session["current_df"] = self._default_df.copy() if self._default_df is not None else None | |
session["retrievers"] = self._default_retrievers | |
session["ai_system"] = self._default_ai_system | |
session["description"] = self._dataset_description | |
session["name"] = self._default_name | |
# Ensure we have the basic required fields | |
if "name" not in session: | |
session["name"] = self._default_name | |
if "description" not in session: | |
session["description"] = self._dataset_description | |
# Update last accessed time | |
session["last_accessed"] = time.time() | |
return self._sessions[session_id] | |
def clear_session_state(self, session_id: str): | |
""" | |
Clear session-specific state | |
Args: | |
session_id: The session identifier | |
""" | |
if session_id in self._sessions: | |
del self._sessions[session_id] | |
def update_session_dataset(self, session_id: str, df, name: str, desc: str): | |
""" | |
Update dataset for a specific session | |
Args: | |
session_id: The session identifier | |
df: Pandas DataFrame containing the dataset | |
name: Name of the dataset | |
desc: Description of the dataset | |
""" | |
try: | |
self._make_data = make_data(df, desc) | |
retrievers = self.initialize_retrievers(self.styling_instructions, [str(self._make_data)]) | |
# Check if session has a user_id to create user-specific AI system | |
current_user_id = None | |
if session_id in self._sessions and "user_id" in self._sessions[session_id]: | |
current_user_id = self._sessions[session_id]["user_id"] | |
ai_system = self.create_ai_system_for_user(retrievers, current_user_id) | |
# Get default model config for new sessions | |
default_model_config = { | |
"provider": os.getenv("MODEL_PROVIDER", "openai"), | |
"model": os.getenv("MODEL_NAME", "gpt-4o-mini"), | |
"api_key": os.getenv("OPENAI_API_KEY"), | |
"temperature": float(os.getenv("TEMPERATURE", 1.0)), | |
"max_tokens": int(os.getenv("MAX_TOKENS", 6000)) | |
} | |
# Create a completely fresh session state for the new dataset | |
# This ensures no remnants of the previous dataset remain | |
session_state = { | |
"current_df": df, | |
"retrievers": retrievers, | |
"ai_system": ai_system, | |
"make_data": self._make_data, | |
"description": desc, | |
"name": name, | |
"model_config": default_model_config, # Initialize with default | |
} | |
# Preserve user_id, chat_id, and model_config if they exist in the current session | |
if session_id in self._sessions: | |
if "user_id" in self._sessions[session_id]: | |
session_state["user_id"] = self._sessions[session_id]["user_id"] | |
if "chat_id" in self._sessions[session_id]: | |
session_state["chat_id"] = self._sessions[session_id]["chat_id"] | |
if "model_config" in self._sessions[session_id]: | |
# Preserve the user's model configuration | |
session_state["model_config"] = self._sessions[session_id]["model_config"] | |
# Replace the entire session with the new state | |
self._sessions[session_id] = session_state | |
logger.log_message(f"Updated session {session_id} with completely fresh dataset state: {name}", level=logging.INFO) | |
except Exception as e: | |
logger.log_message(f"Error updating dataset for session {session_id}: {str(e)}", level=logging.ERROR) | |
raise e | |
def reset_session_to_default(self, session_id: str): | |
""" | |
Reset a session to use the default dataset | |
Args: | |
session_id: The session identifier | |
""" | |
try: | |
# Get default model config from environment | |
default_model_config = { | |
"provider": os.getenv("MODEL_PROVIDER", "openai"), | |
"model": os.getenv("MODEL_NAME", "gpt-4o-mini"), | |
"api_key": os.getenv("OPENAI_API_KEY"), | |
"temperature": float(os.getenv("TEMPERATURE", 1.0)), | |
"max_tokens": int(os.getenv("MAX_TOKENS", 6000)) | |
} | |
# Clear any custom data associated with the session first | |
if session_id in self._sessions: | |
del self._sessions[session_id] | |
logger.log_message(f"Cleared existing state for session {session_id} before reset.", level=logging.INFO) | |
# Initialize with default state | |
self._sessions[session_id] = { | |
"current_df": self._default_df.copy(), # Use a copy | |
"retrievers": self._default_retrievers, | |
"ai_system": self._default_ai_system, | |
"description": self._dataset_description, | |
"name": self._default_name, # Explicitly set the default name | |
"make_data": None, # Clear any custom make_data | |
"model_config": default_model_config # Initialize with default model config | |
} | |
logger.log_message(f"Reset session {session_id} to default dataset: {self._default_name}", level=logging.INFO) | |
except Exception as e: | |
logger.log_message(f"Error resetting session {session_id}: {str(e)}", level=logging.ERROR) | |
raise e | |
def create_ai_system_for_user(self, retrievers, user_id=None): | |
""" | |
Create an AI system with user-specific agents (including custom agents) | |
Args: | |
retrievers: The retrievers for the AI system | |
user_id: Optional user ID to load custom agents for | |
Returns: | |
An auto_analyst instance with all available agents (standard + custom) | |
""" | |
try: | |
if user_id: | |
# Import here to avoid circular imports | |
from src.db.init_db import session_factory | |
# Create a database session | |
db_session = session_factory() | |
try: | |
# Create AI system with user context to load custom agents | |
ai_system = auto_analyst( | |
agents=[], | |
retrievers=retrievers, | |
user_id=user_id, | |
db_session=db_session | |
) | |
logger.log_message(f"Created AI system for user {user_id}", level=logging.INFO) | |
return ai_system | |
finally: | |
db_session.close() | |
else: | |
# Create standard AI system without custom agents | |
return auto_analyst(agents=[], retrievers=retrievers) | |
except Exception as e: | |
logger.log_message(f"Error creating AI system for user {user_id}: {str(e)}", level=logging.ERROR) | |
# Fallback to standard AI system | |
return auto_analyst(agents=[], retrievers=retrievers) | |
def set_session_user(self, session_id: str, user_id: int, chat_id: int = None): | |
""" | |
Associate a user with a session | |
Args: | |
session_id: The session identifier | |
user_id: The authenticated user ID | |
chat_id: Optional chat ID for tracking conversation | |
Returns: | |
Updated session state dictionary | |
""" | |
# Ensure we have a session state for this session ID | |
if session_id not in self._sessions: | |
self.get_session_state(session_id) # Initialize with defaults | |
# Store user ID | |
self._sessions[session_id]["user_id"] = user_id | |
# Generate or use chat ID | |
if chat_id: | |
chat_id_to_use = chat_id | |
else: | |
# Check if chat_id already exists | |
if "chat_id" not in self._sessions[session_id] or not self._sessions[session_id]["chat_id"]: | |
# Use current timestamp + random number to generate a more readable ID | |
import random | |
chat_id_to_use = int(time.time() * 1000) % 1000000 + random.randint(1, 999) | |
else: | |
chat_id_to_use = self._sessions[session_id]["chat_id"] | |
# Store chat ID | |
self._sessions[session_id]["chat_id"] = chat_id_to_use | |
# Recreate AI system with user context to load custom agents | |
try: | |
session_retrievers = self._sessions[session_id]["retrievers"] | |
user_ai_system = self.create_ai_system_for_user(session_retrievers, user_id) | |
self._sessions[session_id]["ai_system"] = user_ai_system | |
logger.log_message(f"Updated AI system for session {session_id} with user {user_id}", level=logging.INFO) | |
except Exception as e: | |
logger.log_message(f"Error updating AI system for user {user_id}: {str(e)}", level=logging.ERROR) | |
# Continue with existing AI system if update fails | |
# Make sure this data gets saved | |
logger.log_message(f"Associated session {session_id} with user_id={user_id}, chat_id={chat_id_to_use}", level=logging.INFO) | |
# Return the updated session data | |
return self._sessions[session_id] | |
async def get_session_id(request, session_manager): | |
""" | |
Get the session ID from the request, create/associate a user if needed | |
Args: | |
request: FastAPI Request object | |
session_manager: SessionManager instance | |
Returns: | |
Session ID string | |
""" | |
# First try to get from query params | |
session_id = request.query_params.get("session_id") | |
# If not in query params, try to get from headers | |
if not session_id: | |
session_id = request.headers.get("X-Session-ID") | |
# If still not found, generate a new one | |
if not session_id: | |
session_id = str(uuid.uuid4()) | |
# Get or create the session state | |
session_state = session_manager.get_session_state(session_id) | |
# First, check if we already have a user associated with this session | |
if session_state.get("user_id") is not None: | |
return session_id | |
# Next, try to get authenticated user using the API key | |
current_user = await get_current_user(request) | |
if current_user: | |
# Use the authenticated user instead of creating a guest | |
session_manager.set_session_user( | |
session_id=session_id, | |
user_id=current_user.user_id | |
) | |
logger.log_message(f"Associated session {session_id} with authenticated user_id {current_user.user_id}", level=logging.INFO) | |
return session_id | |
# Check if a user_id was provided in the request params | |
user_id_param = request.query_params.get("user_id") | |
if user_id_param: | |
try: | |
user_id = int(user_id_param) | |
session_manager.set_session_user(session_id=session_id, user_id=user_id) | |
logger.log_message(f"Associated session {session_id} with provided user_id {user_id}", level=logging.INFO) | |
return session_id | |
except (ValueError, TypeError): | |
logger.log_message(f"Invalid user_id in query params: {user_id_param}", level=logging.WARNING) | |
# No user was found or created - just return the session ID without associating a user | |
logger.log_message(f"No authenticated user found for session {session_id}, continuing without user association", level=logging.INFO) | |
return session_id |