Ezhil
Initial commit-folder structure
10d82a8
import streamlit as st
import pandas as pd
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
import networkx as nx
import plotly.graph_objects as go
from itertools import combinations
def generate_popularity_trends(df):
st.header("Popularity Trends Over Time")
tab1, tab2 = st.tabs(["Average Popularity", "Individual Songs"])
with tab1:
st.markdown("<span style='color:blue'>**Average Popularity by Decade**</span>: Tracks how song popularity has <span style='color:red'>changed over time</span>. This <span style='color:green'>blue</span> line chart highlights peaks.", unsafe_allow_html=True)
if 'Decade' in df.columns:
avg_pop_by_decade = df.groupby(
'Decade')['Popularity'].mean().reset_index()
fig1 = px.line(avg_pop_by_decade, x='Decade', y='Popularity',
title='Average Popularity by Decade', color_discrete_sequence=['blue'])
fig1.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig1)
else:
st.error("Cannot plot: 'Decade' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Song Popularity Over Time**</span>: Highlights individual trends with <span style='color:red'>red</span> points, showing <span style='color:green'>green</span> details on hover.", unsafe_allow_html=True)
if 'Year' in df.columns:
fig2 = px.scatter(df, x='Year', y='Popularity', title='Song Popularity Over Time', hover_data=[
'Track Name', 'Artist Name(s)'], color_discrete_sequence=['red'])
fig2.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig2)
else:
st.error("Cannot plot: 'Year' column missing.")
def generate_audio_features(df):
st.header("Audio Features Analysis")
feature = st.selectbox(
"Select Feature", ['Danceability', 'Energy', 'Tempo', 'Loudness'])
tab1, tab2, tab3 = st.tabs(["Distribution", "By Decade", "Correlations"])
with tab1:
st.markdown(
f"<span style='color:blue'>**Distribution of {feature}**</span>: Shows variation in <span style='color:red'>{feature.lower()}</span> with <span style='color:green'>green</span> bars.", unsafe_allow_html=True)
fig3 = px.histogram(
df, x=feature, title=f'Distribution of {feature}', color_discrete_sequence=['green'])
fig3.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig3)
with tab2:
st.markdown(
f"<span style='color:blue'>**{feature} by Decade**</span>: Compares <span style='color:red'>{feature.lower()}</span> across decades with <span style='color:green'>green</span> boxes.", unsafe_allow_html=True)
if 'Decade' in df.columns:
fig4 = px.box(df, x='Decade', y=feature,
title=f'{feature} Distribution by Decade', color_discrete_sequence=['green'])
fig4.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig4)
else:
st.error("Cannot plot: 'Decade' column missing.")
with tab3:
st.markdown("<span style='color:blue'>**Feature Correlations**</span>: Explores relationships with <span style='color:red'>multi-colored</span> scatter points.", unsafe_allow_html=True)
fig, ax = plt.subplots()
sns.pairplot(df[['Energy', 'Danceability', 'Valence', 'Tempo']])
st.pyplot(fig)
def generate_genre_analysis(df):
st.header("Genre & Artist Analysis")
tab1, tab2, tab3 = st.tabs(
["Top Genres", "Genre Distribution", "Artist Popularity"])
with tab1:
st.markdown("<span style='color:blue'>**Top Genres by Decade**</span>: Shows frequent genres with <span style='color:red'>red</span> bars, <span style='color:green'>green</span> highlights.", unsafe_allow_html=True)
if 'Decade' in df.columns:
genre_decade = df.explode('Genres').groupby(
['Decade', 'Genres']).size().reset_index(name='Count')
top_genres = genre_decade.groupby('Decade').apply(
lambda x: x.nlargest(5, 'Count')).reset_index(drop=True)
fig5 = px.bar(top_genres, x='Decade', y='Count', color='Genres',
title='Top Genres by Decade', color_discrete_sequence=px.colors.qualitative.Set1)
fig5.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig5)
else:
st.error("Cannot plot: 'Decade' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Genre Distribution**</span>: Breaks down genres with <span style='color:red'>multi-colored</span> pie slices.", unsafe_allow_html=True)
genre_counts = df.explode(
'Genres')['Genres'].value_counts().reset_index()
fig6 = px.pie(genre_counts, values='count', names='Genres',
title='Genre Distribution', color_discrete_sequence=px.colors.qualitative.Set2)
fig6.update_layout(width=800, height=400)
st.plotly_chart(fig6)
with tab3:
st.markdown("<span style='color:blue'>**Artist Popularity Heatmap**</span>: Visualizes popularity with <span style='color:red'>red</span> intensity.", unsafe_allow_html=True)
if 'Artist Name(s)' in df.columns:
artist_pop = df.groupby('Artist Name(s)')[
'Popularity'].mean().reset_index()
fig7 = px.imshow(pd.pivot_table(df, values='Popularity', index='Artist Name(s)', aggfunc='mean').fillna(
0), title='Artist Popularity Heatmap', color_continuous_scale='Reds')
fig7.update_layout(width=800, height=400)
st.plotly_chart(fig7)
else:
st.error("Cannot plot: 'Artist Name(s)' column missing.")
def generate_explicit_trends(df):
st.header("Explicit Content Trends")
st.markdown("<span style='color:blue'>**Explicit vs Non-Explicit Songs**</span>: Compares content with <span style='color:red'>stacked bars</span> in <span style='color:green'>green</span> and <span style='color:purple'>purple</span>.", unsafe_allow_html=True)
if 'Decade' in df.columns and 'Explicit' in df.columns:
explicit_by_decade = df.groupby(
['Decade', 'Explicit']).size().unstack().fillna(0)
fig8 = px.bar(explicit_by_decade, barmode='stack',
title='Explicit vs Non-Explicit Songs by Decade', color_discrete_sequence=['green', 'purple'])
fig8.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig8)
else:
st.error("Cannot plot: 'Decade' or 'Explicit' column missing.")
def generate_album_insights(df):
st.header("Album & Label Insights")
tab1, tab2 = st.tabs(["Top Labels", "Album Popularity"])
with tab1:
st.markdown("<span style='color:blue'>**Top Record Labels**</span>: Identifies labels with <span style='color:red'>blue</span> bars.", unsafe_allow_html=True)
if 'Label' in df.columns:
top_labels = df['Label'].value_counts().nlargest(10).reset_index()
fig9 = px.bar(top_labels, x='Label', y='count',
title='Top Record Labels by Song Count', color_discrete_sequence=['blue'])
fig9.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig9)
else:
st.error("Cannot plot: 'Label' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Album Popularity**</span>: Shows albums with <span style='color:red'>red</span> bubbles.", unsafe_allow_html=True)
if 'Album Name' in df.columns and 'Popularity' in df.columns:
album_pop = df.groupby('Album Name')['Popularity'].agg(
['mean', 'count']).reset_index()
fig10 = px.scatter(album_pop, x='count', y='mean', size='mean', hover_data=[
'Album Name'], title='Albums: Song Count vs Average Popularity', color_discrete_sequence=['red'])
fig10.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig10)
else:
st.error("Cannot plot: 'Album Name' or 'Popularity' column missing.")
def generate_tempo_mood(df):
st.header("Tempo & Mood Analysis")
tab1, tab2 = st.tabs(["Tempo Trends", "Mood Scatter"])
with tab1:
st.markdown("<span style='color:blue'>**Tempo Trends**</span>: Tracks changes with <span style='color:red'>orange</span> line.", unsafe_allow_html=True)
if 'Year' in df.columns and 'Tempo' in df.columns:
tempo_by_year = df.groupby('Year')['Tempo'].mean().reset_index()
fig11 = px.line(tempo_by_year, x='Year', y='Tempo',
title='Average Tempo Over Time', color_discrete_sequence=['orange'])
fig11.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig11)
else:
st.error("Cannot plot: 'Year' or 'Tempo' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Valence vs Energy**</span>: Groups mood with <span style='color:red'>purple</span> points.", unsafe_allow_html=True)
if 'Valence' in df.columns and 'Energy' in df.columns:
fig12 = px.scatter(df, x='Valence', y='Energy', title='Valence vs Energy', hover_data=[
'Track Name'], color_discrete_sequence=['purple'])
fig12.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig12)
else:
st.error("Cannot plot: 'Valence' or 'Energy' column missing.")
def generate_top_artists_songs(df):
st.header("Top Artists and Songs")
tab1, tab2 = st.tabs(["Top Artists", "Top Songs"])
with tab1:
st.markdown("<span style='color:blue'>**Most Featured Artists**</span>: Shows artists with <span style='color:red'>green</span> bars.", unsafe_allow_html=True)
if 'Artist Name(s)' in df.columns:
top_artists = df['Artist Name(s)'].value_counts().nlargest(
10).reset_index()
fig13 = px.bar(top_artists, x='Artist Name(s)', y='count',
title='Most Featured Artists', color_discrete_sequence=['green'])
fig13.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig13)
else:
st.error("Cannot plot: 'Artist Name(s)' column missing.")
with tab2:
st.markdown(
"<span style='color:blue'>**Top 10 Songs**</span>: Lists songs with <span style='color:red'>blue</span> bars.", unsafe_allow_html=True)
if 'Track Name' in df.columns and 'Popularity' in df.columns:
top_songs = df.nlargest(10, 'Popularity')[
['Track Name', 'Popularity']]
fig14 = px.bar(top_songs, y='Track Name', x='Popularity', orientation='h',
title='Top 10 Songs by Popularity', color_discrete_sequence=['blue'])
fig14.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig14)
else:
st.error("Cannot plot: 'Track Name' or 'Popularity' column missing.")
def generate_album_release_trends(df):
st.header("Album Release Trends")
tab1, tab2 = st.tabs(["Albums per Year", "Artist-Year Heatmap"])
with tab1:
st.markdown("<span style='color:blue'>**Albums per Year**</span>: Tracks releases with <span style='color:red'>purple</span> line.", unsafe_allow_html=True)
if 'Year' in df.columns:
albums_per_year = df['Year'].value_counts(
).sort_index().reset_index()
fig15 = px.line(albums_per_year, x='Year', y='count',
title='Number of Albums Released per Year', color_discrete_sequence=['purple'])
fig15.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig15)
else:
st.error("Cannot plot: 'Year' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Songs by Artists and Years**</span>: Visualizes with <span style='color:red'>heatmap colors</span>.", unsafe_allow_html=True)
if 'Artist Name(s)' in df.columns and 'Year' in df.columns:
artist_year = df.groupby(
['Artist Name(s)', 'Year']).size().unstack().fillna(0)
fig16 = px.imshow(
artist_year, title='Songs Released by Artists Across Years', color_continuous_scale='Viridis')
fig16.update_layout(width=800, height=400)
st.plotly_chart(fig16)
else:
st.error("Cannot plot: 'Artist Name(s)' or 'Year' column missing.")
def generate_duration_analysis(df):
st.header("Track Duration Analysis")
tab1, tab2 = st.tabs(["Distribution", "By Decade"])
with tab1:
st.markdown("<span style='color:blue'>**Track Duration Distribution**</span>: Shows lengths with <span style='color:red'>orange</span> bars.", unsafe_allow_html=True)
if 'Track Duration (ms)' in df.columns:
fig17 = px.histogram(df, x='Track Duration (ms)',
title='Distribution of Track Durations', color_discrete_sequence=['orange'])
fig17.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig17)
else:
st.error("Cannot plot: 'Track Duration (ms)' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Duration by Decade**</span>: Compares with <span style='color:red'>green</span> boxes.", unsafe_allow_html=True)
if 'Decade' in df.columns and 'Track Duration (ms)' in df.columns:
fig18 = px.box(df, x='Decade', y='Track Duration (ms)',
title='Track Duration by Decade', color_discrete_sequence=['green'])
fig18.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig18)
else:
st.error(
"Cannot plot: 'Decade' or 'Track Duration (ms)' column missing.")
def generate_streaming_insights(df):
st.header("Streaming and Engagement Insights")
tab1, tab2 = st.tabs(["Popularity vs Duration", "Time Signature"])
with tab1:
st.markdown("<span style='color:blue'>**Popularity vs Duration**</span>: Explores trends with <span style='color:red'>blue</span> scatter.", unsafe_allow_html=True)
if 'Track Duration (ms)' in df.columns and 'Popularity' in df.columns:
fig19 = px.scatter(df, x='Track Duration (ms)', y='Popularity',
title='Popularity vs Track Duration', color_discrete_sequence=['blue'])
fig19.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig19)
else:
st.error(
"Cannot plot: 'Track Duration (ms)' or 'Popularity' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Popularity by Time Signature**</span>: Compares with <span style='color:red'>purple</span> bars.", unsafe_allow_html=True)
if 'Time Signature' in df.columns and 'Popularity' in df.columns:
pop_by_time = df.groupby('Time Signature')[
'Popularity'].mean().reset_index()
fig20 = px.bar(pop_by_time, x='Time Signature', y='Popularity',
title='Average Popularity by Time Signature', color_discrete_sequence=['purple'])
fig20.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig20)
else:
st.error(
"Cannot plot: 'Time Signature' or 'Popularity' column missing.")
def generate_feature_comparisons(df):
st.header("Feature Comparisons Across Decades")
tab1, tab2 = st.tabs(["Feature Comparison", "Loudness Trends"])
with tab1:
st.markdown("<span style='color:blue'>**Feature Comparison**</span>: Compares features with <span style='color:red'>multi-colored</span> bars.", unsafe_allow_html=True)
if 'Decade' in df.columns:
features_by_decade = df.groupby(
'Decade')[['Danceability', 'Energy', 'Valence']].mean().reset_index()
fig21 = px.bar(features_by_decade.melt(id_vars='Decade'), x='Decade', y='value', color='variable',
barmode='group', title='Feature Comparison by Decade', color_discrete_sequence=px.colors.qualitative.Pastel)
fig21.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig21)
else:
st.error("Cannot plot: 'Decade' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Loudness Over Time**</span>: Tracks with <span style='color:red'>green</span> line.", unsafe_allow_html=True)
if 'Year' in df.columns and 'Loudness' in df.columns:
loudness_by_year = df.groupby(
'Year')['Loudness'].mean().reset_index()
fig22 = px.line(loudness_by_year, x='Year', y='Loudness',
title='Average Loudness Over Time', color_discrete_sequence=['green'])
fig22.update_layout(template='plotly_white', width=800, height=400)
st.plotly_chart(fig22)
else:
st.error("Cannot plot: 'Year' or 'Loudness' column missing.")
def generate_network_analysis(df):
st.header("Network Analysis")
tab1, tab2 = st.tabs(["Artist Collaborations", "Genre Crossover"])
with tab1:
st.markdown("<span style='color:blue'>**Artist Collaborations**</span>: Visualizes connections with <span style='color:red'>interactive red nodes</span>. Hover for details.", unsafe_allow_html=True)
if 'Artist Name(s)' in df.columns:
# Filter out non-string values and handle missing data
valid_artists = df['Artist Name(s)'].dropna().astype(str)
G = nx.Graph()
for artists in valid_artists:
artists_list = [a.strip() for a in artists.split(
',') if a.strip()] # Split and clean
if len(artists_list) > 1: # Check length of list
for a1, a2 in combinations(artists_list, 2):
G.add_edge(a1, a2)
if G.number_of_nodes() > 0:
# Convert to Plotly format
# Use spring layout for better spacing
pos = nx.spring_layout(G)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
node_x = [pos[node][0] for node in G.nodes()]
node_y = [pos[node][1] for node in G.nodes()]
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
hoverinfo='text',
marker=dict(size=10, color='red'),
text=list(G.nodes()),
textposition="top center")
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title='Artist Collaborations',
showlegend=False,
hovermode='closest',
margin=dict(b=0, l=0, r=0, t=40),
width=800, height=600))
st.plotly_chart(fig)
else:
st.warning("No artist collaborations to display.")
else:
st.error("Cannot plot: 'Artist Name(s)' column missing.")
with tab2:
st.markdown("<span style='color:blue'>**Genre Crossover**</span>: Placeholder with <span style='color:red'>future multi-color</span> potential.", unsafe_allow_html=True)
st.write("To implement, install `holoviews` and use the following code:")
st.code("""
import holoviews as hv
hv.extension('bokeh')
genre_pairs = df.explode('Genres')[['Genres']].merge(df.explode('Genres')[['Genres']], how='cross')
chord_data = genre_pairs.groupby(['Genres_x', 'Genres_y']).size().reset_index(name='value')
chord = hv.Chord(chord_data).opts(title="Genre Crossover")
st.write(hv.render(chord, backend='bokeh'))
""")