EveSa commited on
Commit
be067ba
1 Parent(s): 5acd184

Revert "Ling"

Browse files
Files changed (3) hide show
  1. requirements.txt +4 -82
  2. src/fine_tune_T5.py +0 -230
  3. src/inference_t5.py +15 -20
requirements.txt CHANGED
@@ -1,56 +1,15 @@
1
- absl-py==1.4.0
2
- aiohttp==3.8.4
3
- aiosignal==1.3.1
4
- alembic==1.9.4
5
- anyascii==0.3.1
6
  anyio==3.6.2
7
- async-timeout==4.0.2
8
- attrs==22.2.0
9
- banal==1.0.6
10
- blis==0.7.9
11
- catalogue==2.0.8
12
- certifi==2022.12.7
13
- charset-normalizer==3.0.1
14
- click==8.1.3
15
- confection==0.0.4
16
- contourpy==1.0.7
17
- contractions==0.1.73
18
- cycler==0.11.0
19
- cymem==2.0.7
20
- dataloader==2.0
21
- dataset==1.6.0
22
- datasets==2.10.1
23
- dill==0.3.6
24
- en-core-web-lg==3.5.0
25
- evaluate==0.4.0
26
- fastapi==0.91.0
27
- filelock==3.9.0
28
- flake8==6.0.0
29
- fonttools==4.38.0
30
- frozenlist==1.3.3
31
- fsspec==2023.3.0
32
- greenlet==2.0.2
33
- h11==0.14.0
34
- huggingface-hub==0.12.1
35
  certifi==2022.12.7
36
  charset-normalizer==3.1.0
37
  click==8.1.3
38
  fastapi==0.92.0
39
  filelock==3.9.0
 
 
40
  idna==3.4
41
- importlib-metadata==6.0.0
42
- importlib-resources==5.12.0
43
  Jinja2==3.1.2
44
  joblib==1.2.0
45
- kiwisolver==1.4.4
46
- langcodes==3.3.0
47
- Mako==1.2.4
48
  MarkupSafe==2.1.2
49
- matplotlib==3.7.0
50
- mccabe==0.7.0
51
- multidict==6.0.4
52
- multiprocess==0.70.14
53
- murmurhash==1.0.9
54
  numpy==1.24.2
55
  nvidia-cublas-cu11==11.10.3.66
56
  nvidia-cuda-nvrtc-cu11==11.7.99
@@ -58,48 +17,15 @@ nvidia-cuda-runtime-cu11==11.7.99
58
  nvidia-cudnn-cu11==8.5.0.96
59
  packaging==23.0
60
  pandas==1.5.3
61
- pathy==0.10.1
62
- Pillow==9.4.0
63
- preshed==3.0.8
64
- protobuf==3.20.0
65
- pyahocorasick==2.0.0
66
- pyarrow==11.0.0
67
- pycodestyle==2.10.0
68
- pydantic==1.10.4
69
- pyflakes==3.0.1
70
- pyparsing==3.0.9
71
  python-dateutil==2.8.2
72
- python-multipart==0.0.5
73
  pytz==2022.7.1
74
  PyYAML==6.0
75
  regex==2022.10.31
76
  requests==2.28.2
77
- responses==0.18.0
78
- rouge-score==0.1.2
79
- scikit-learn==1.2.1
80
- scipy==1.10.0
81
- sentencepiece==0.1.97
82
  six==1.16.0
83
- smart-open==6.3.0
84
  sniffio==1.3.0
85
- spacy==3.5.0
86
- spacy-legacy==3.0.12
87
- spacy-loggers==1.0.4
88
- SQLAlchemy==1.4.46
89
- srsly==2.4.5
90
- starlette==0.24.0
91
- summarizer==0.0.7
92
- textsearch==0.0.24
93
- thinc==8.1.7
94
- threadpoolctl==3.1.0
95
- tokenizers==0.13.2
96
- tomli==2.0.1
97
- torch==1.13.1
98
- tqdm==4.64.1
99
- transformers==4.26.1
100
- typer==0.7.0
101
- typing-extensions==4.4.0
102
- urllib3==1.26.14
103
  starlette==0.25.0
104
  tokenizers==0.13.2
105
  torch==1.13.1
@@ -107,7 +33,3 @@ tqdm==4.65.0
107
  typing_extensions==4.5.0
108
  urllib3==1.26.15
109
  uvicorn==0.20.0
110
- wasabi==1.1.1
111
- xxhash==3.2.0
112
- yarl==1.8.2
113
- zipp==3.14.0
 
 
 
 
 
 
1
  anyio==3.6.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  certifi==2022.12.7
3
  charset-normalizer==3.1.0
4
  click==8.1.3
5
  fastapi==0.92.0
6
  filelock==3.9.0
7
+ h11==0.14.0
8
+ huggingface-hub==0.13.1
9
  idna==3.4
 
 
10
  Jinja2==3.1.2
11
  joblib==1.2.0
 
 
 
12
  MarkupSafe==2.1.2
 
 
 
 
 
13
  numpy==1.24.2
14
  nvidia-cublas-cu11==11.10.3.66
15
  nvidia-cuda-nvrtc-cu11==11.7.99
 
17
  nvidia-cudnn-cu11==8.5.0.96
18
  packaging==23.0
19
  pandas==1.5.3
20
+ pydantic==1.10.5
 
 
 
 
 
 
 
 
 
21
  python-dateutil==2.8.2
22
+ python-multipart==0.0.6
23
  pytz==2022.7.1
24
  PyYAML==6.0
25
  regex==2022.10.31
26
  requests==2.28.2
 
 
 
 
 
27
  six==1.16.0
 
28
  sniffio==1.3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  starlette==0.25.0
30
  tokenizers==0.13.2
31
  torch==1.13.1
 
33
  typing_extensions==4.5.0
34
  urllib3==1.26.15
35
  uvicorn==0.20.0
 
 
 
 
src/fine_tune_T5.py DELETED
@@ -1,230 +0,0 @@
1
- import re
2
- import os
3
- import string
4
- import contractions
5
- import torch
6
- import datasets
7
- from datasets import Dataset
8
- import pandas as pd
9
- from tqdm import tqdm
10
- import evaluate
11
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
12
- from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer
13
- from transformers import DataCollatorForSeq2Seq
14
-
15
-
16
- def clean_text(texts):
17
- '''This fonction makes clean text for the future use'''
18
- texts = texts.lower()
19
- texts = contractions.fix(texts)
20
- texts = texts.translate(str.maketrans("", "", string.punctuation))
21
- texts = re.sub(r'\n', ' ', texts)
22
- return texts
23
-
24
-
25
- def datasetmaker(path=str):
26
- '''This fonction take the jsonl file, read it to a dataframe,
27
- remove the colums not needed for the task and turn it into a file type Dataset
28
- '''
29
- data = pd.read_json(path, lines=True)
30
- df = data.drop(['url',
31
- 'archive',
32
- 'title',
33
- 'date',
34
- 'compression',
35
- 'coverage',
36
- 'density',
37
- 'compression_bin',
38
- 'coverage_bin',
39
- 'density_bin'],
40
- axis=1)
41
- tqdm.pandas()
42
- df['text'] = df.text.apply(lambda texts: clean_text(texts))
43
- df['summary'] = df.summary.apply(lambda summary: clean_text(summary))
44
- dataset = Dataset.from_dict(df)
45
- return dataset
46
-
47
- # voir si le model par hasard esr déjà bien
48
-
49
- # test_text = dataset['text'][0]
50
- # pipe = pipeline('summarization', model = model_ckpt)
51
- # pipe_out = pipe(test_text)
52
- # print(pipe_out[0]['summary_text'].replace('.<n>', '.\n'))
53
- # print(dataset['summary'][0])
54
-
55
-
56
- def generate_batch_sized_chunks(list_elements, batch_size):
57
- """split the dataset into smaller batches that we can process simultaneously
58
- Yield successive batch-sized chunks from list_of_elements."""
59
- for i in range(0, len(list_elements), batch_size):
60
- yield list_elements[i: i + batch_size]
61
-
62
-
63
- def calculate_metric(dataset, metric, model, tokenizer,
64
- batch_size, device,
65
- column_text='text',
66
- column_summary='summary'):
67
- article_batches = list(
68
- str(generate_batch_sized_chunks(dataset[column_text], batch_size)))
69
- target_batches = list(
70
- str(generate_batch_sized_chunks(dataset[column_summary], batch_size)))
71
-
72
- for article_batch, target_batch in tqdm(
73
- zip(article_batches, target_batches), total=len(article_batches)):
74
-
75
- inputs = tokenizer(article_batch, max_length=1024, truncation=True,
76
- padding="max_length", return_tensors="pt")
77
- # parameter for length penalty ensures that the model does not
78
- # generate sequences that are too long.
79
- summaries = model.generate(
80
- input_ids=inputs["input_ids"].to(device),
81
- attention_mask=inputs["attention_mask"].to(device),
82
- length_penalty=0.8,
83
- num_beams=8,
84
- max_length=128)
85
-
86
- # Décode les textes
87
- # renplacer les tokens, ajouter des textes décodés avec les rédéfences
88
- # vers la métrique.
89
- decoded_summaries = [
90
- tokenizer.decode(
91
- s,
92
- skip_special_tokens=True,
93
- clean_up_tokenization_spaces=True) for s in summaries]
94
-
95
- decoded_summaries = [d.replace("", " ") for d in decoded_summaries]
96
-
97
- metric.add_batch(
98
- predictions=decoded_summaries,
99
- references=target_batch)
100
-
101
- # compute et return les ROUGE scores.
102
- results = metric.compute()
103
- rouge_names = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
104
- rouge_dict = dict((rn, results[rn]) for rn in rouge_names)
105
- return pd.DataFrame(rouge_dict, index=['T5'])
106
-
107
-
108
- def convert_ex_to_features(example_batch):
109
- input_encodings = tokenizer(example_batch['text'],
110
- max_length=1024, truncation=True)
111
-
112
- labels = tokenizer(
113
- example_batch['summary'],
114
- max_length=128,
115
- truncation=True)
116
-
117
- return {
118
- 'input_ids': input_encodings['input_ids'],
119
- 'attention_mask': input_encodings['attention_mask'],
120
- 'labels': labels['input_ids']
121
- }
122
-
123
-
124
- if __name__ == '__main__':
125
-
126
- train_dataset = datasetmaker('data/train_extract.jsonl')
127
-
128
- dev_dataset = datasetmaker('data/dev_extract.jsonl')
129
-
130
- test_dataset = datasetmaker('data/test_extract.jsonl')
131
-
132
- dataset = datasets.DatasetDict({'train': train_dataset,
133
- 'dev': dev_dataset, 'test': test_dataset})
134
-
135
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
136
-
137
- tokenizer = AutoTokenizer.from_pretrained('google/mt5-small')
138
- mt5_config = AutoConfig.from_pretrained(
139
- 'google/mt5-small',
140
- max_length=128,
141
- length_penalty=0.6,
142
- no_repeat_ngram_size=2,
143
- num_beams=15,
144
- )
145
- model = (AutoModelForSeq2SeqLM
146
- .from_pretrained('google/mt5-small', config=mt5_config)
147
- .to(device))
148
-
149
- dataset_pt = dataset.map(
150
- convert_ex_to_features,
151
- remove_columns=[
152
- "summary",
153
- "text"],
154
- batched=True,
155
- batch_size=128)
156
-
157
- data_collator = DataCollatorForSeq2Seq(
158
- tokenizer, model=model, return_tensors="pt")
159
-
160
- training_args = Seq2SeqTrainingArguments(
161
- output_dir="t5_summary",
162
- log_level="error",
163
- num_train_epochs=10,
164
- learning_rate=5e-4,
165
- warmup_steps=0,
166
- optim="adafactor",
167
- weight_decay=0.01,
168
- per_device_train_batch_size=2,
169
- per_device_eval_batch_size=1,
170
- gradient_accumulation_steps=16,
171
- evaluation_strategy="steps",
172
- eval_steps=100,
173
- predict_with_generate=True,
174
- generation_max_length=128,
175
- save_steps=500,
176
- logging_steps=10,
177
- # push_to_hub = True
178
- )
179
-
180
- trainer = Seq2SeqTrainer(
181
- model=model,
182
- args=training_args,
183
- data_collator=data_collator,
184
- # compute_metrics = calculate_metric,
185
- train_dataset=dataset_pt['train'],
186
- eval_dataset=dataset_pt['dev'].select(range(10)),
187
- tokenizer=tokenizer,
188
- )
189
-
190
- trainer.train()
191
- rouge_metric = evaluate.load("rouge")
192
-
193
- score = calculate_metric(
194
- test_dataset,
195
- rouge_metric,
196
- trainer.model,
197
- tokenizer,
198
- batch_size=2,
199
- device=device,
200
- column_text='text',
201
- column_summary='summary')
202
- print(score)
203
-
204
- # Fine Tuning terminés et à sauvgarder
205
-
206
- # save fine-tuned model in local
207
- os.makedirs("t5_summary", exist_ok=True)
208
- if hasattr(trainer.model, "module"):
209
- trainer.model.module.save_pretrained("t5_summary")
210
- else:
211
- trainer.model.save_pretrained("t5_summary")
212
- tokenizer.save_pretrained("t5_summary")
213
- # load local model
214
- model = (AutoModelForSeq2SeqLM
215
- .from_pretrained("t5_summary")
216
- .to(device))
217
-
218
- # mettre en usage : TEST
219
-
220
- # gen_kwargs = {"length_penalty" : 0.8, "num_beams" : 8, "max_length" : 128}
221
- # sample_text = dataset["test"][0]["text"]
222
- # reference = dataset["test"][0]["summary"]
223
- # pipe = pipeline("summarization", model='./summarization_t5')
224
-
225
- # print("Text :")
226
- # print(sample_text)
227
- # print("\nReference Summary :")
228
- # print(reference)
229
- # print("\nModel Summary :")
230
- # print(pipe(sample_text, **gen_kwargs)[0]["summary_text"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/inference_t5.py CHANGED
@@ -7,16 +7,14 @@ import re
7
  import string
8
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
9
 
10
-
11
- def clean_text(texts: str) -> str:
12
  texts = texts.lower()
13
  texts = contractions.fix(texts)
14
  texts = texts.translate(str.maketrans("", "", string.punctuation))
15
- texts = re.sub(r'\n', ' ', texts)
16
  return texts
17
 
18
-
19
- def inferenceAPI(text: str) -> str:
20
  """
21
  Predict the summary for an input text
22
  --------
@@ -27,16 +25,14 @@ def inferenceAPI(text: str) -> str:
27
  str
28
  The summary for the input text
29
  """
30
-
31
- # On défini les paramètres d'entrée pour le modèle
32
- text = clean_text(text)
33
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
- tokenizer = (AutoTokenizer.from_pretrained("Linggg/t5_summary"))
35
- # load local model
36
  model = (AutoModelForSeq2SeqLM
37
- .from_pretrained("Linggg/t5_summary")
38
- .to(device))
39
-
40
  text_encoding = tokenizer(
41
  text,
42
  max_length=1024,
@@ -56,12 +52,11 @@ def inferenceAPI(text: str) -> str:
56
  )
57
 
58
  preds = [
59
- tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True)
60
- for gen_id in generated_ids
61
  ]
62
  return "".join(preds)
63
 
64
-
65
- # if __name__ == "__main__":
66
- # text = input('Entrez votre phrase à résumer : ')
67
- # print('summary:', inferenceAPI(text))
 
7
  import string
8
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
9
 
10
+ def clean_data(texts):
 
11
  texts = texts.lower()
12
  texts = contractions.fix(texts)
13
  texts = texts.translate(str.maketrans("", "", string.punctuation))
14
+ texts = re.sub(r'\n',' ',texts)
15
  return texts
16
 
17
+ def inferenceAPI_t5(text: str) -> str:
 
18
  """
19
  Predict the summary for an input text
20
  --------
 
25
  str
26
  The summary for the input text
27
  """
28
+ # definition des parametres d'entree pour le modèle
29
+ text = clean_data(text)
30
+ device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
31
+ tokenizer= (AutoTokenizer.from_pretrained("./summarization_t5"))
32
+ # chargement du modele local
 
33
  model = (AutoModelForSeq2SeqLM
34
+ .from_pretrained("./summarization_t5")
35
+ .to(device))
 
36
  text_encoding = tokenizer(
37
  text,
38
  max_length=1024,
 
52
  )
53
 
54
  preds = [
55
+ tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True)
56
+ for gen_id in generated_ids
57
  ]
58
  return "".join(preds)
59
 
60
+ if __name__ == "__main__":
61
+ text = input('Entrez votre phrase à résumer : ')
62
+ print('summary:',inferenceAPI(text))