Spaces:
Runtime error
Runtime error
Merge pull request #9 from EveSa/Ling
Browse files- requirements.txt +82 -4
- src/fine_tune_T5.py +230 -0
- src/inference_t5.py +20 -15
requirements.txt
CHANGED
@@ -1,15 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
anyio==3.6.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
certifi==2022.12.7
|
3 |
charset-normalizer==3.1.0
|
4 |
click==8.1.3
|
5 |
fastapi==0.92.0
|
6 |
filelock==3.9.0
|
7 |
-
h11==0.14.0
|
8 |
-
huggingface-hub==0.13.1
|
9 |
idna==3.4
|
|
|
|
|
10 |
Jinja2==3.1.2
|
11 |
joblib==1.2.0
|
|
|
|
|
|
|
12 |
MarkupSafe==2.1.2
|
|
|
|
|
|
|
|
|
|
|
13 |
numpy==1.24.2
|
14 |
nvidia-cublas-cu11==11.10.3.66
|
15 |
nvidia-cuda-nvrtc-cu11==11.7.99
|
@@ -17,15 +58,48 @@ nvidia-cuda-runtime-cu11==11.7.99
|
|
17 |
nvidia-cudnn-cu11==8.5.0.96
|
18 |
packaging==23.0
|
19 |
pandas==1.5.3
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
python-dateutil==2.8.2
|
22 |
-
python-multipart==0.0.
|
23 |
pytz==2022.7.1
|
24 |
PyYAML==6.0
|
25 |
regex==2022.10.31
|
26 |
requests==2.28.2
|
|
|
|
|
|
|
|
|
|
|
27 |
six==1.16.0
|
|
|
28 |
sniffio==1.3.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
starlette==0.25.0
|
30 |
tokenizers==0.13.2
|
31 |
torch==1.13.1
|
@@ -33,3 +107,7 @@ tqdm==4.65.0
|
|
33 |
typing_extensions==4.5.0
|
34 |
urllib3==1.26.15
|
35 |
uvicorn==0.20.0
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
aiohttp==3.8.4
|
3 |
+
aiosignal==1.3.1
|
4 |
+
alembic==1.9.4
|
5 |
+
anyascii==0.3.1
|
6 |
anyio==3.6.2
|
7 |
+
async-timeout==4.0.2
|
8 |
+
attrs==22.2.0
|
9 |
+
banal==1.0.6
|
10 |
+
blis==0.7.9
|
11 |
+
catalogue==2.0.8
|
12 |
+
certifi==2022.12.7
|
13 |
+
charset-normalizer==3.0.1
|
14 |
+
click==8.1.3
|
15 |
+
confection==0.0.4
|
16 |
+
contourpy==1.0.7
|
17 |
+
contractions==0.1.73
|
18 |
+
cycler==0.11.0
|
19 |
+
cymem==2.0.7
|
20 |
+
dataloader==2.0
|
21 |
+
dataset==1.6.0
|
22 |
+
datasets==2.10.1
|
23 |
+
dill==0.3.6
|
24 |
+
en-core-web-lg==3.5.0
|
25 |
+
evaluate==0.4.0
|
26 |
+
fastapi==0.91.0
|
27 |
+
filelock==3.9.0
|
28 |
+
flake8==6.0.0
|
29 |
+
fonttools==4.38.0
|
30 |
+
frozenlist==1.3.3
|
31 |
+
fsspec==2023.3.0
|
32 |
+
greenlet==2.0.2
|
33 |
+
h11==0.14.0
|
34 |
+
huggingface-hub==0.12.1
|
35 |
certifi==2022.12.7
|
36 |
charset-normalizer==3.1.0
|
37 |
click==8.1.3
|
38 |
fastapi==0.92.0
|
39 |
filelock==3.9.0
|
|
|
|
|
40 |
idna==3.4
|
41 |
+
importlib-metadata==6.0.0
|
42 |
+
importlib-resources==5.12.0
|
43 |
Jinja2==3.1.2
|
44 |
joblib==1.2.0
|
45 |
+
kiwisolver==1.4.4
|
46 |
+
langcodes==3.3.0
|
47 |
+
Mako==1.2.4
|
48 |
MarkupSafe==2.1.2
|
49 |
+
matplotlib==3.7.0
|
50 |
+
mccabe==0.7.0
|
51 |
+
multidict==6.0.4
|
52 |
+
multiprocess==0.70.14
|
53 |
+
murmurhash==1.0.9
|
54 |
numpy==1.24.2
|
55 |
nvidia-cublas-cu11==11.10.3.66
|
56 |
nvidia-cuda-nvrtc-cu11==11.7.99
|
|
|
58 |
nvidia-cudnn-cu11==8.5.0.96
|
59 |
packaging==23.0
|
60 |
pandas==1.5.3
|
61 |
+
pathy==0.10.1
|
62 |
+
Pillow==9.4.0
|
63 |
+
preshed==3.0.8
|
64 |
+
protobuf==3.20.0
|
65 |
+
pyahocorasick==2.0.0
|
66 |
+
pyarrow==11.0.0
|
67 |
+
pycodestyle==2.10.0
|
68 |
+
pydantic==1.10.4
|
69 |
+
pyflakes==3.0.1
|
70 |
+
pyparsing==3.0.9
|
71 |
python-dateutil==2.8.2
|
72 |
+
python-multipart==0.0.5
|
73 |
pytz==2022.7.1
|
74 |
PyYAML==6.0
|
75 |
regex==2022.10.31
|
76 |
requests==2.28.2
|
77 |
+
responses==0.18.0
|
78 |
+
rouge-score==0.1.2
|
79 |
+
scikit-learn==1.2.1
|
80 |
+
scipy==1.10.0
|
81 |
+
sentencepiece==0.1.97
|
82 |
six==1.16.0
|
83 |
+
smart-open==6.3.0
|
84 |
sniffio==1.3.0
|
85 |
+
spacy==3.5.0
|
86 |
+
spacy-legacy==3.0.12
|
87 |
+
spacy-loggers==1.0.4
|
88 |
+
SQLAlchemy==1.4.46
|
89 |
+
srsly==2.4.5
|
90 |
+
starlette==0.24.0
|
91 |
+
summarizer==0.0.7
|
92 |
+
textsearch==0.0.24
|
93 |
+
thinc==8.1.7
|
94 |
+
threadpoolctl==3.1.0
|
95 |
+
tokenizers==0.13.2
|
96 |
+
tomli==2.0.1
|
97 |
+
torch==1.13.1
|
98 |
+
tqdm==4.64.1
|
99 |
+
transformers==4.26.1
|
100 |
+
typer==0.7.0
|
101 |
+
typing-extensions==4.4.0
|
102 |
+
urllib3==1.26.14
|
103 |
starlette==0.25.0
|
104 |
tokenizers==0.13.2
|
105 |
torch==1.13.1
|
|
|
107 |
typing_extensions==4.5.0
|
108 |
urllib3==1.26.15
|
109 |
uvicorn==0.20.0
|
110 |
+
wasabi==1.1.1
|
111 |
+
xxhash==3.2.0
|
112 |
+
yarl==1.8.2
|
113 |
+
zipp==3.14.0
|
src/fine_tune_T5.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import string
|
4 |
+
import contractions
|
5 |
+
import torch
|
6 |
+
import datasets
|
7 |
+
from datasets import Dataset
|
8 |
+
import pandas as pd
|
9 |
+
from tqdm import tqdm
|
10 |
+
import evaluate
|
11 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
|
12 |
+
from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer
|
13 |
+
from transformers import DataCollatorForSeq2Seq
|
14 |
+
|
15 |
+
|
16 |
+
def clean_text(texts):
|
17 |
+
'''This fonction makes clean text for the future use'''
|
18 |
+
texts = texts.lower()
|
19 |
+
texts = contractions.fix(texts)
|
20 |
+
texts = texts.translate(str.maketrans("", "", string.punctuation))
|
21 |
+
texts = re.sub(r'\n', ' ', texts)
|
22 |
+
return texts
|
23 |
+
|
24 |
+
|
25 |
+
def datasetmaker(path=str):
|
26 |
+
'''This fonction take the jsonl file, read it to a dataframe,
|
27 |
+
remove the colums not needed for the task and turn it into a file type Dataset
|
28 |
+
'''
|
29 |
+
data = pd.read_json(path, lines=True)
|
30 |
+
df = data.drop(['url',
|
31 |
+
'archive',
|
32 |
+
'title',
|
33 |
+
'date',
|
34 |
+
'compression',
|
35 |
+
'coverage',
|
36 |
+
'density',
|
37 |
+
'compression_bin',
|
38 |
+
'coverage_bin',
|
39 |
+
'density_bin'],
|
40 |
+
axis=1)
|
41 |
+
tqdm.pandas()
|
42 |
+
df['text'] = df.text.apply(lambda texts: clean_text(texts))
|
43 |
+
df['summary'] = df.summary.apply(lambda summary: clean_text(summary))
|
44 |
+
dataset = Dataset.from_dict(df)
|
45 |
+
return dataset
|
46 |
+
|
47 |
+
# voir si le model par hasard esr déjà bien
|
48 |
+
|
49 |
+
# test_text = dataset['text'][0]
|
50 |
+
# pipe = pipeline('summarization', model = model_ckpt)
|
51 |
+
# pipe_out = pipe(test_text)
|
52 |
+
# print(pipe_out[0]['summary_text'].replace('.<n>', '.\n'))
|
53 |
+
# print(dataset['summary'][0])
|
54 |
+
|
55 |
+
|
56 |
+
def generate_batch_sized_chunks(list_elements, batch_size):
|
57 |
+
"""split the dataset into smaller batches that we can process simultaneously
|
58 |
+
Yield successive batch-sized chunks from list_of_elements."""
|
59 |
+
for i in range(0, len(list_elements), batch_size):
|
60 |
+
yield list_elements[i: i + batch_size]
|
61 |
+
|
62 |
+
|
63 |
+
def calculate_metric(dataset, metric, model, tokenizer,
|
64 |
+
batch_size, device,
|
65 |
+
column_text='text',
|
66 |
+
column_summary='summary'):
|
67 |
+
article_batches = list(
|
68 |
+
str(generate_batch_sized_chunks(dataset[column_text], batch_size)))
|
69 |
+
target_batches = list(
|
70 |
+
str(generate_batch_sized_chunks(dataset[column_summary], batch_size)))
|
71 |
+
|
72 |
+
for article_batch, target_batch in tqdm(
|
73 |
+
zip(article_batches, target_batches), total=len(article_batches)):
|
74 |
+
|
75 |
+
inputs = tokenizer(article_batch, max_length=1024, truncation=True,
|
76 |
+
padding="max_length", return_tensors="pt")
|
77 |
+
# parameter for length penalty ensures that the model does not
|
78 |
+
# generate sequences that are too long.
|
79 |
+
summaries = model.generate(
|
80 |
+
input_ids=inputs["input_ids"].to(device),
|
81 |
+
attention_mask=inputs["attention_mask"].to(device),
|
82 |
+
length_penalty=0.8,
|
83 |
+
num_beams=8,
|
84 |
+
max_length=128)
|
85 |
+
|
86 |
+
# Décode les textes
|
87 |
+
# renplacer les tokens, ajouter des textes décodés avec les rédéfences
|
88 |
+
# vers la métrique.
|
89 |
+
decoded_summaries = [
|
90 |
+
tokenizer.decode(
|
91 |
+
s,
|
92 |
+
skip_special_tokens=True,
|
93 |
+
clean_up_tokenization_spaces=True) for s in summaries]
|
94 |
+
|
95 |
+
decoded_summaries = [d.replace("", " ") for d in decoded_summaries]
|
96 |
+
|
97 |
+
metric.add_batch(
|
98 |
+
predictions=decoded_summaries,
|
99 |
+
references=target_batch)
|
100 |
+
|
101 |
+
# compute et return les ROUGE scores.
|
102 |
+
results = metric.compute()
|
103 |
+
rouge_names = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
|
104 |
+
rouge_dict = dict((rn, results[rn]) for rn in rouge_names)
|
105 |
+
return pd.DataFrame(rouge_dict, index=['T5'])
|
106 |
+
|
107 |
+
|
108 |
+
def convert_ex_to_features(example_batch):
|
109 |
+
input_encodings = tokenizer(example_batch['text'],
|
110 |
+
max_length=1024, truncation=True)
|
111 |
+
|
112 |
+
labels = tokenizer(
|
113 |
+
example_batch['summary'],
|
114 |
+
max_length=128,
|
115 |
+
truncation=True)
|
116 |
+
|
117 |
+
return {
|
118 |
+
'input_ids': input_encodings['input_ids'],
|
119 |
+
'attention_mask': input_encodings['attention_mask'],
|
120 |
+
'labels': labels['input_ids']
|
121 |
+
}
|
122 |
+
|
123 |
+
|
124 |
+
if __name__ == '__main__':
|
125 |
+
|
126 |
+
train_dataset = datasetmaker('data/train_extract.jsonl')
|
127 |
+
|
128 |
+
dev_dataset = datasetmaker('data/dev_extract.jsonl')
|
129 |
+
|
130 |
+
test_dataset = datasetmaker('data/test_extract.jsonl')
|
131 |
+
|
132 |
+
dataset = datasets.DatasetDict({'train': train_dataset,
|
133 |
+
'dev': dev_dataset, 'test': test_dataset})
|
134 |
+
|
135 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
136 |
+
|
137 |
+
tokenizer = AutoTokenizer.from_pretrained('google/mt5-small')
|
138 |
+
mt5_config = AutoConfig.from_pretrained(
|
139 |
+
'google/mt5-small',
|
140 |
+
max_length=128,
|
141 |
+
length_penalty=0.6,
|
142 |
+
no_repeat_ngram_size=2,
|
143 |
+
num_beams=15,
|
144 |
+
)
|
145 |
+
model = (AutoModelForSeq2SeqLM
|
146 |
+
.from_pretrained('google/mt5-small', config=mt5_config)
|
147 |
+
.to(device))
|
148 |
+
|
149 |
+
dataset_pt = dataset.map(
|
150 |
+
convert_ex_to_features,
|
151 |
+
remove_columns=[
|
152 |
+
"summary",
|
153 |
+
"text"],
|
154 |
+
batched=True,
|
155 |
+
batch_size=128)
|
156 |
+
|
157 |
+
data_collator = DataCollatorForSeq2Seq(
|
158 |
+
tokenizer, model=model, return_tensors="pt")
|
159 |
+
|
160 |
+
training_args = Seq2SeqTrainingArguments(
|
161 |
+
output_dir="t5_summary",
|
162 |
+
log_level="error",
|
163 |
+
num_train_epochs=10,
|
164 |
+
learning_rate=5e-4,
|
165 |
+
warmup_steps=0,
|
166 |
+
optim="adafactor",
|
167 |
+
weight_decay=0.01,
|
168 |
+
per_device_train_batch_size=2,
|
169 |
+
per_device_eval_batch_size=1,
|
170 |
+
gradient_accumulation_steps=16,
|
171 |
+
evaluation_strategy="steps",
|
172 |
+
eval_steps=100,
|
173 |
+
predict_with_generate=True,
|
174 |
+
generation_max_length=128,
|
175 |
+
save_steps=500,
|
176 |
+
logging_steps=10,
|
177 |
+
# push_to_hub = True
|
178 |
+
)
|
179 |
+
|
180 |
+
trainer = Seq2SeqTrainer(
|
181 |
+
model=model,
|
182 |
+
args=training_args,
|
183 |
+
data_collator=data_collator,
|
184 |
+
# compute_metrics = calculate_metric,
|
185 |
+
train_dataset=dataset_pt['train'],
|
186 |
+
eval_dataset=dataset_pt['dev'].select(range(10)),
|
187 |
+
tokenizer=tokenizer,
|
188 |
+
)
|
189 |
+
|
190 |
+
trainer.train()
|
191 |
+
rouge_metric = evaluate.load("rouge")
|
192 |
+
|
193 |
+
score = calculate_metric(
|
194 |
+
test_dataset,
|
195 |
+
rouge_metric,
|
196 |
+
trainer.model,
|
197 |
+
tokenizer,
|
198 |
+
batch_size=2,
|
199 |
+
device=device,
|
200 |
+
column_text='text',
|
201 |
+
column_summary='summary')
|
202 |
+
print(score)
|
203 |
+
|
204 |
+
# Fine Tuning terminés et à sauvgarder
|
205 |
+
|
206 |
+
# save fine-tuned model in local
|
207 |
+
os.makedirs("t5_summary", exist_ok=True)
|
208 |
+
if hasattr(trainer.model, "module"):
|
209 |
+
trainer.model.module.save_pretrained("t5_summary")
|
210 |
+
else:
|
211 |
+
trainer.model.save_pretrained("t5_summary")
|
212 |
+
tokenizer.save_pretrained("t5_summary")
|
213 |
+
# load local model
|
214 |
+
model = (AutoModelForSeq2SeqLM
|
215 |
+
.from_pretrained("t5_summary")
|
216 |
+
.to(device))
|
217 |
+
|
218 |
+
# mettre en usage : TEST
|
219 |
+
|
220 |
+
# gen_kwargs = {"length_penalty" : 0.8, "num_beams" : 8, "max_length" : 128}
|
221 |
+
# sample_text = dataset["test"][0]["text"]
|
222 |
+
# reference = dataset["test"][0]["summary"]
|
223 |
+
# pipe = pipeline("summarization", model='./summarization_t5')
|
224 |
+
|
225 |
+
# print("Text :")
|
226 |
+
# print(sample_text)
|
227 |
+
# print("\nReference Summary :")
|
228 |
+
# print(reference)
|
229 |
+
# print("\nModel Summary :")
|
230 |
+
# print(pipe(sample_text, **gen_kwargs)[0]["summary_text"])
|
src/inference_t5.py
CHANGED
@@ -7,14 +7,16 @@ import re
|
|
7 |
import string
|
8 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
9 |
|
10 |
-
|
|
|
11 |
texts = texts.lower()
|
12 |
texts = contractions.fix(texts)
|
13 |
texts = texts.translate(str.maketrans("", "", string.punctuation))
|
14 |
-
texts = re.sub(r'\n',' ',texts)
|
15 |
return texts
|
16 |
|
17 |
-
|
|
|
18 |
"""
|
19 |
Predict the summary for an input text
|
20 |
--------
|
@@ -25,14 +27,16 @@ def inferenceAPI_t5(text: str) -> str:
|
|
25 |
str
|
26 |
The summary for the input text
|
27 |
"""
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
33 |
model = (AutoModelForSeq2SeqLM
|
34 |
-
|
35 |
-
|
|
|
36 |
text_encoding = tokenizer(
|
37 |
text,
|
38 |
max_length=1024,
|
@@ -52,11 +56,12 @@ def inferenceAPI_t5(text: str) -> str:
|
|
52 |
)
|
53 |
|
54 |
preds = [
|
55 |
-
|
56 |
-
|
57 |
]
|
58 |
return "".join(preds)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
7 |
import string
|
8 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
9 |
|
10 |
+
|
11 |
+
def clean_text(texts: str) -> str:
|
12 |
texts = texts.lower()
|
13 |
texts = contractions.fix(texts)
|
14 |
texts = texts.translate(str.maketrans("", "", string.punctuation))
|
15 |
+
texts = re.sub(r'\n', ' ', texts)
|
16 |
return texts
|
17 |
|
18 |
+
|
19 |
+
def inferenceAPI(text: str) -> str:
|
20 |
"""
|
21 |
Predict the summary for an input text
|
22 |
--------
|
|
|
27 |
str
|
28 |
The summary for the input text
|
29 |
"""
|
30 |
+
|
31 |
+
# On défini les paramètres d'entrée pour le modèle
|
32 |
+
text = clean_text(text)
|
33 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
tokenizer = (AutoTokenizer.from_pretrained("Linggg/t5_summary"))
|
35 |
+
# load local model
|
36 |
model = (AutoModelForSeq2SeqLM
|
37 |
+
.from_pretrained("Linggg/t5_summary")
|
38 |
+
.to(device))
|
39 |
+
|
40 |
text_encoding = tokenizer(
|
41 |
text,
|
42 |
max_length=1024,
|
|
|
56 |
)
|
57 |
|
58 |
preds = [
|
59 |
+
tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
60 |
+
for gen_id in generated_ids
|
61 |
]
|
62 |
return "".join(preds)
|
63 |
|
64 |
+
|
65 |
+
# if __name__ == "__main__":
|
66 |
+
# text = input('Entrez votre phrase à résumer : ')
|
67 |
+
# print('summary:', inferenceAPI(text))
|