Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from PIL import Image | |
from torchvision import transforms | |
from transformers import ProcessorMixin, BatchEncoding | |
from transformers.image_processing_utils import BatchFeature | |
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073) | |
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711) | |
def make_list_of_images(x): | |
if not isinstance(x, list): | |
return [x] | |
return x | |
def get_image_transform(config): | |
config = config.vision_config | |
transform = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC), | |
transforms.CenterCrop(224), | |
transforms.Normalize(OPENAI_DATASET_MEAN, OPENAI_DATASET_STD) # assume image | |
] | |
) | |
return transform | |
def load_and_transform_image(image_path, transform): | |
image = Image.open(image_path).convert('RGB') if isinstance(image_path, str) else image_path | |
image_outputs = transform(image) | |
return image_outputs | |
class LanguageBindImageProcessor(ProcessorMixin): | |
attributes = [] | |
tokenizer_class = ("LanguageBindImageTokenizer") | |
def __init__(self, config, tokenizer=None, **kwargs): | |
super().__init__(**kwargs) | |
self.config = config | |
self.transform = get_image_transform(config) | |
self.image_processor = load_and_transform_image | |
self.tokenizer = tokenizer | |
self.image_mean = OPENAI_DATASET_MEAN | |
self.crop_size = {'height': 224, 'width': 224} | |
def __call__(self, images=None, text=None, context_length=77, return_tensors=None, **kwargs): | |
if text is None and images is None: | |
raise ValueError("You have to specify either text or images. Both cannot be none.") | |
if text is not None: | |
encoding = self.tokenizer(text, max_length=context_length, padding='max_length', | |
truncation=True, return_tensors=return_tensors, **kwargs) | |
if images is not None: | |
images = make_list_of_images(images) | |
image_features = [self.image_processor(image, self.transform) for image in images] | |
image_features = torch.stack(image_features) | |
if text is not None and images is not None: | |
encoding["pixel_values"] = image_features | |
return encoding | |
elif text is not None: | |
return encoding | |
else: | |
return {"pixel_values": image_features} | |
def preprocess(self, images, return_tensors): | |
return self.__call__(images=images, return_tensors=return_tensors) | |
def batch_decode(self, skip_special_tokens=True, *args, **kwargs): | |
""" | |
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs) | |
def decode(self, skip_special_tokens=True, *args, **kwargs): | |
""" | |
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs) | |