Spaces:
Running
on
Zero
Running
on
Zero
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/data/indexed_dataset.py | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of the FairSeq source tree. | |
# copied from fairseq/fairseq/data/indexed_dataset.py | |
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary | |
# other slight modifications to remove fairseq dependencies | |
# Added document index to index file and made it accessible. | |
# An empty sentence no longer separates documents. | |
from functools import lru_cache | |
import os | |
import shutil | |
import struct | |
from itertools import accumulate | |
import numpy as np | |
import torch | |
def __best_fitting_dtype(vocab_size=None): | |
if vocab_size is not None and vocab_size < 65500: | |
return np.uint16 | |
else: | |
return np.int32 | |
def get_available_dataset_impl(): | |
return ['lazy', 'cached', 'mmap'] | |
def infer_dataset_impl(path): | |
if IndexedDataset.exists(path): | |
with open(index_file_path(path), 'rb') as f: | |
magic = f.read(8) | |
if magic == IndexedDataset._HDR_MAGIC: | |
return 'cached' | |
elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]: | |
return 'mmap' | |
else: | |
return None | |
else: | |
print(f"Dataset does not exist: {path}") | |
print("Path should be a basename that both .idx and .bin can be appended to get full filenames.") | |
return None | |
def make_builder(out_file, impl, vocab_size=None): | |
if impl == 'mmap': | |
return MMapIndexedDatasetBuilder(out_file, dtype=__best_fitting_dtype(vocab_size)) | |
else: | |
return IndexedDatasetBuilder(out_file) | |
def make_dataset(path, impl, skip_warmup=False): | |
if not IndexedDataset.exists(path): | |
print(f"Dataset does not exist: {path}") | |
print("Path should be a basename that both .idx and .bin can be appended to get full filenames.") | |
return None | |
if impl == 'infer': | |
impl = infer_dataset_impl(path) | |
if impl == 'lazy' and IndexedDataset.exists(path): | |
return IndexedDataset(path) | |
elif impl == 'cached' and IndexedDataset.exists(path): | |
return IndexedCachedDataset(path) | |
elif impl == 'mmap' and MMapIndexedDataset.exists(path): | |
return MMapIndexedDataset(path, skip_warmup) | |
print(f"Unknown dataset implementation: {impl}") | |
return None | |
def dataset_exists(path, impl): | |
if impl == 'mmap': | |
return MMapIndexedDataset.exists(path) | |
else: | |
return IndexedDataset.exists(path) | |
def read_longs(f, n): | |
a = np.empty(n, dtype=np.int64) | |
f.readinto(a) | |
return a | |
def write_longs(f, a): | |
f.write(np.array(a, dtype=np.int64)) | |
dtypes = { | |
1: np.uint8, | |
2: np.int8, | |
3: np.int16, | |
4: np.int32, | |
5: np.int64, | |
6: np.float32, | |
7: np.float64, | |
8: np.uint16 | |
} | |
def code(dtype): | |
for k in dtypes.keys(): | |
if dtypes[k] == dtype: | |
return k | |
raise ValueError(dtype) | |
def index_file_path(prefix_path): | |
return prefix_path + '.idx' | |
def data_file_path(prefix_path): | |
return prefix_path + '.bin' | |
def create_doc_idx(sizes): | |
doc_idx = [0] | |
for i, s in enumerate(sizes): | |
if s == 0: | |
doc_idx.append(i + 1) | |
return doc_idx | |
class IndexedDataset(torch.utils.data.Dataset): | |
"""Loader for IndexedDataset""" | |
_HDR_MAGIC = b'TNTIDX\x00\x00' | |
def __init__(self, path): | |
super().__init__() | |
self.path = path | |
self.data_file = None | |
self.read_index(path) | |
def read_index(self, path): | |
with open(index_file_path(path), 'rb') as f: | |
magic = f.read(8) | |
assert magic == self._HDR_MAGIC, ( | |
'Index file doesn\'t match expected format. ' | |
'Make sure that --dataset-impl is configured properly.' | |
) | |
version = f.read(8) | |
assert struct.unpack('<Q', version) == (1,) | |
code, self.element_size = struct.unpack('<QQ', f.read(16)) | |
self.dtype = dtypes[code] | |
self._len, self.s = struct.unpack('<QQ', f.read(16)) | |
self.doc_count = struct.unpack('<Q', f.read(8)) | |
self.dim_offsets = read_longs(f, self._len + 1) | |
self.data_offsets = read_longs(f, self._len + 1) | |
self.sizes = read_longs(f, self.s) | |
self.doc_idx = read_longs(f, self.doc_count) | |
def read_data(self, path): | |
self.data_file = open(data_file_path(path), 'rb', buffering=0) | |
def check_index(self, i): | |
if i < 0 or i >= self._len: | |
raise IndexError('index out of range') | |
def __del__(self): | |
if self.data_file: | |
self.data_file.close() | |
# @lru_cache(maxsize=8) | |
def __getitem__(self, idx): | |
if not self.data_file: | |
self.read_data(self.path) | |
if isinstance(idx, int): | |
i = idx | |
self.check_index(i) | |
tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]] | |
a = np.empty(tensor_size, dtype=self.dtype) | |
self.data_file.seek(self.data_offsets[i] * self.element_size) | |
self.data_file.readinto(a) | |
return a | |
elif isinstance(idx, slice): | |
start, stop, step = idx.indices(len(self)) | |
if step != 1: | |
raise ValueError("Slices into indexed_dataset must be contiguous") | |
sizes = self.sizes[self.dim_offsets[start]:self.dim_offsets[stop]] | |
size = sum(sizes) | |
a = np.empty(size, dtype=self.dtype) | |
self.data_file.seek(self.data_offsets[start] * self.element_size) | |
self.data_file.readinto(a) | |
offsets = list(accumulate(sizes)) | |
sents = np.split(a, offsets[:-1]) | |
return sents | |
def __len__(self): | |
return self._len | |
def num_tokens(self, index): | |
return self.sizes[index] | |
def size(self, index): | |
return self.sizes[index] | |
def exists(path): | |
return ( | |
os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path)) | |
) | |
def supports_prefetch(self): | |
return False # avoid prefetching to save memory | |
class IndexedCachedDataset(IndexedDataset): | |
def __init__(self, path): | |
super().__init__(path) | |
self.cache = None | |
self.cache_index = {} | |
def supports_prefetch(self): | |
return True | |
def prefetch(self, indices): | |
if all(i in self.cache_index for i in indices): | |
return | |
if not self.data_file: | |
self.read_data(self.path) | |
indices = sorted(set(indices)) | |
total_size = 0 | |
for i in indices: | |
total_size += self.data_offsets[i + 1] - self.data_offsets[i] | |
self.cache = np.empty(total_size, dtype=self.dtype) | |
ptx = 0 | |
self.cache_index.clear() | |
for i in indices: | |
self.cache_index[i] = ptx | |
size = self.data_offsets[i + 1] - self.data_offsets[i] | |
a = self.cache[ptx: ptx + size] | |
self.data_file.seek(self.data_offsets[i] * self.element_size) | |
self.data_file.readinto(a) | |
ptx += size | |
if self.data_file: | |
# close and delete data file after prefetch so we can pickle | |
self.data_file.close() | |
self.data_file = None | |
# @lru_cache(maxsize=8) | |
def __getitem__(self, idx): | |
if isinstance(idx, int): | |
i = idx | |
self.check_index(i) | |
tensor_size = self.sizes[self.dim_offsets[i]:self.dim_offsets[i + 1]] | |
a = np.empty(tensor_size, dtype=self.dtype) | |
ptx = self.cache_index[i] | |
np.copyto(a, self.cache[ptx: ptx + a.size]) | |
return a | |
elif isinstance(idx, slice): | |
# Hack just to make this work, can optimizer later if necessary | |
sents = [] | |
for i in range(*idx.indices(len(self))): | |
sents.append(self[i]) | |
return sents | |
class IndexedDatasetBuilder(object): | |
element_sizes = { | |
np.uint8: 1, | |
np.int8: 1, | |
np.int16: 2, | |
np.int32: 4, | |
np.int64: 8, | |
np.float32: 4, | |
np.float64: 8 | |
} | |
def __init__(self, out_file, dtype=np.int32): | |
self.out_file = open(out_file, 'wb') | |
self.dtype = dtype | |
self.data_offsets = [0] | |
self.dim_offsets = [0] | |
self.sizes = [] | |
self.element_size = self.element_sizes[self.dtype] | |
self.doc_idx = [0] | |
def add_item(self, tensor): | |
bytes = self.out_file.write(np.array(tensor.numpy(), dtype=self.dtype)) | |
self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size) | |
for s in tensor.size(): | |
self.sizes.append(s) | |
self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size())) | |
def end_document(self): | |
self.doc_idx.append(len(self.sizes)) | |
def merge_file_(self, another_file): | |
index = IndexedDataset(another_file) | |
assert index.dtype == self.dtype | |
doc_offset = len(self.sizes) | |
begin = self.data_offsets[-1] | |
for data_offset in index.data_offsets[1:]: | |
self.data_offsets.append(begin + data_offset) | |
self.sizes.extend(index.sizes) | |
begin = self.dim_offsets[-1] | |
for dim_offset in index.dim_offsets[1:]: | |
self.dim_offsets.append(begin + dim_offset) | |
self.doc_idx.extend((doc_offset + index.doc_idx)[1:]) | |
with open(data_file_path(another_file), 'rb') as f: | |
while True: | |
data = f.read(1024) | |
if data: | |
self.out_file.write(data) | |
else: | |
break | |
def finalize(self, index_file): | |
self.out_file.close() | |
index = open(index_file, 'wb') | |
index.write(b'TNTIDX\x00\x00') | |
index.write(struct.pack('<Q', 1)) | |
index.write(struct.pack('<QQ', code(self.dtype), self.element_size)) | |
index.write(struct.pack('<QQ', len(self.data_offsets) - 1, len(self.sizes))) | |
index.write(struct.pack('<Q', len(self.doc_idx))) | |
write_longs(index, self.dim_offsets) | |
write_longs(index, self.data_offsets) | |
write_longs(index, self.sizes) | |
write_longs(index, self.doc_idx) | |
index.close() | |
def _warmup_mmap_file(path): | |
with open(path, 'rb') as stream: | |
while stream.read(100 * 1024 * 1024): | |
pass | |
class MMapIndexedDataset(torch.utils.data.Dataset): | |
class Index(object): | |
_HDR_MAGIC = b'MMIDIDX\x00\x00' | |
def writer(cls, path, dtype): | |
class _Writer(object): | |
def __enter__(self): | |
self._file = open(path, 'wb') | |
self._file.write(cls._HDR_MAGIC) | |
self._file.write(struct.pack('<Q', 1)) | |
self._file.write(struct.pack('<B', code(dtype))) | |
return self | |
def _get_pointers(sizes): | |
dtype_size = dtype().itemsize | |
address = 0 | |
pointers = [] | |
for size in sizes: | |
pointers.append(address) | |
address += size * dtype_size | |
return pointers | |
def write(self, sizes, doc_idx): | |
pointers = self._get_pointers(sizes) | |
self._file.write(struct.pack('<Q', len(sizes))) | |
self._file.write(struct.pack('<Q', len(doc_idx))) | |
sizes = np.array(sizes, dtype=np.int32) | |
self._file.write(sizes.tobytes(order='C')) | |
del sizes | |
pointers = np.array(pointers, dtype=np.int64) | |
self._file.write(pointers.tobytes(order='C')) | |
del pointers | |
doc_idx = np.array(doc_idx, dtype=np.int64) | |
self._file.write(doc_idx.tobytes(order='C')) | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
self._file.close() | |
return _Writer() | |
def __init__(self, path, skip_warmup=False): | |
with open(path, 'rb') as stream: | |
magic_test = stream.read(9) | |
assert self._HDR_MAGIC == magic_test, ( | |
'Index file doesn\'t match expected format. ' | |
'Make sure that --dataset-impl is configured properly.' | |
) | |
version = struct.unpack('<Q', stream.read(8)) | |
assert (1,) == version | |
dtype_code, = struct.unpack('<B', stream.read(1)) | |
self._dtype = dtypes[dtype_code] | |
self._dtype_size = self._dtype().itemsize | |
self._len = struct.unpack('<Q', stream.read(8))[0] | |
self._doc_count = struct.unpack('<Q', stream.read(8))[0] | |
offset = stream.tell() | |
if not skip_warmup: | |
print(" warming up index mmap file...") | |
_warmup_mmap_file(path) | |
self._bin_buffer_mmap = np.memmap(path, mode='r', order='C') | |
self._bin_buffer = memoryview(self._bin_buffer_mmap) | |
print(" reading sizes...") | |
self._sizes = np.frombuffer( | |
self._bin_buffer, | |
dtype=np.int32, | |
count=self._len, | |
offset=offset) | |
print(" reading pointers...") | |
self._pointers = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._len, | |
offset=offset + self._sizes.nbytes) | |
print(" reading document index...") | |
self._doc_idx = np.frombuffer(self._bin_buffer, dtype=np.int64, count=self._doc_count, | |
offset=offset + self._sizes.nbytes + self._pointers.nbytes) | |
def __del__(self): | |
self._bin_buffer_mmap._mmap.close() | |
del self._bin_buffer_mmap | |
def dtype(self): | |
return self._dtype | |
def sizes(self): | |
return self._sizes | |
def doc_idx(self): | |
return self._doc_idx | |
def __getitem__(self, i): | |
return self._pointers[i], self._sizes[i] | |
def __len__(self): | |
return self._len | |
def __init__(self, path, skip_warmup=False): | |
super().__init__() | |
self._path = None | |
self._index = None | |
self._bin_buffer = None | |
self._do_init(path, skip_warmup) | |
def __getstate__(self): | |
return self._path | |
def __setstate__(self, state): | |
self._do_init(state, skip_warmup=True) | |
def _do_init(self, path, skip_warmup): | |
self._path = path | |
self._index = self.Index(index_file_path(self._path), skip_warmup) | |
if not skip_warmup: | |
print(" warming up data mmap file...") | |
_warmup_mmap_file(data_file_path(self._path)) | |
print(" creating numpy buffer of mmap...") | |
self._bin_buffer_mmap = np.memmap(data_file_path(self._path), mode='r', order='C') | |
print(" creating memory view of numpy buffer...") | |
self._bin_buffer = memoryview(self._bin_buffer_mmap) | |
def __del__(self): | |
self._bin_buffer_mmap._mmap.close() | |
del self._bin_buffer_mmap | |
del self._index | |
def __len__(self): | |
return len(self._index) | |
# @lru_cache(maxsize=8) | |
def __getitem__(self, idx): | |
if isinstance(idx, (int, np.integer)): | |
ptr, size = self._index[idx] | |
np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, | |
count=size, offset=ptr) | |
return np_array | |
elif isinstance(idx, slice): | |
start, stop, step = idx.indices(len(self)) | |
if step != 1: | |
raise ValueError("Slices into indexed_dataset must be contiguous") | |
ptr = self._index._pointers[start] | |
sizes = self._index._sizes[idx] | |
offsets = list(accumulate(sizes)) | |
total_size = sum(sizes) | |
np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, | |
count=total_size, offset=ptr) | |
sents = np.split(np_array, offsets[:-1]) | |
return sents | |
else: | |
raise TypeError("Unexpected type received for idx: {}".format(type(idx))) | |
def get(self, idx, offset=0, length=None): | |
""" Retrieves a single item from the dataset with the option to only | |
return a portion of the item. | |
get(idx) is the same as [idx] but get() does not support slicing. | |
""" | |
ptr, size = self._index[idx] | |
if length is None: | |
length = size - offset | |
ptr += offset * np.dtype(self._index.dtype).itemsize | |
np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, | |
count=length, offset=ptr) | |
return np_array | |
def sizes(self): | |
return self._index.sizes | |
def doc_idx(self): | |
return self._index.doc_idx | |
def get_doc_idx(self): | |
return self._index._doc_idx | |
def set_doc_idx(self, doc_idx_): | |
self._index._doc_idx = doc_idx_ | |
def supports_prefetch(self): | |
return False | |
def exists(path): | |
return ( | |
os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path)) | |
) | |
class MMapIndexedDatasetBuilder(object): | |
def __init__(self, out_file, dtype=np.int64): | |
self._data_file = open(out_file, 'wb') | |
self._dtype = dtype | |
self._sizes = [] | |
self._doc_idx = [0] | |
def dtype(self): | |
return self._dtype | |
def add_item(self, np_array): | |
# np_array = np.array(tensor.numpy(), dtype=self._dtype) | |
self._data_file.write(np_array.tobytes(order='C')) | |
self._sizes.append(np_array.size) | |
def add_doc(self, np_array, sizes): | |
# np_array = np.array(tensor, dtype=self._dtype) | |
self._data_file.write(np_array.tobytes(order='C')) | |
self._sizes.extend(sizes) | |
self._doc_idx.append(len(self._sizes)) | |
def end_document(self): | |
self._doc_idx.append(len(self._sizes)) | |
def merge_file_(self, another_file): | |
# Concatenate index | |
index = MMapIndexedDataset.Index(index_file_path(another_file)) | |
assert index.dtype == self._dtype | |
offset = len(self._sizes) | |
self._sizes.extend(index.sizes) | |
self._doc_idx.extend((offset + index.doc_idx)[1:]) | |
# Concatenate data | |
with open(data_file_path(another_file), 'rb') as f: | |
shutil.copyfileobj(f, self._data_file) | |
def finalize(self, index_file): | |
self._data_file.close() | |
with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index: | |
index.write(self._sizes, self._doc_idx) | |