MotionLLM / generate.py
EvanTHU
update
445d3d1
raw
history blame
7.33 kB
import sys
import time
import warnings
from pathlib import Path
from typing import Optional
import lightning as L
import torch
from lit_llama import LLaMA, Tokenizer
from lit_llama.utils import EmptyInitOnDevice, lazy_load
@torch.no_grad()
def generate(
model: torch.nn.Module,
idx: torch.Tensor,
max_new_tokens: int,
max_seq_length: int,
temperature: float = 1.0,
top_k: Optional[int] = None,
eos_id: Optional[int] = None,
tokenizer = None,
) -> torch.Tensor:
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
The implementation of this function is modified from A. Karpathy's nanoGPT.
Args:
model: The model to use.
idx: Tensor of shape (T) with indices of the prompt sequence.
max_new_tokens: The number of new tokens to generate.
max_seq_length: The maximum sequence length allowed.
temperature: Scales the predicted logits by 1 / temperature
top_k: If specified, only sample among the tokens with the k highest probabilities
eos_id: If specified, stop generating any more token once the <eos> token is triggered
"""
# create an empty tensor of the expected final shape and fill in the current tokens
# import pdb; pdb.set_trace()
if type(idx) == tuple:
# import pdb; pdb.set_trace()
T = idx[0].shape[-1] + idx[2].shape[-1] + len(idx[1])
before_len = idx[0].shape[-1]
catted = torch.cat((idx[0], torch.zeros((1, len(idx[1]))).cuda(), idx[2]), dim=1).long()
idx = (catted, idx[1], before_len)
T_new = T + max_new_tokens
# import pdb; pdb.set_trace()
empty = torch.empty(T_new, dtype=idx[0].dtype, device=idx[0].device)
empty = torch.empty(T_new, dtype=idx[0].dtype, device=idx[0].device)
empty[:T] = idx[0]
idx = (empty, idx[1], [before_len])
# import pdb; pdb.set_trace()
else:
# import pdb; pdb.set_trace()
T = idx.size(0)
T_new = T + max_new_tokens
empty = torch.empty(T_new, dtype=idx.dtype, device=idx.device)
empty[:T] = idx
idx = empty
# generate max_new_tokens tokens
# import pdb; pdb.set_trace()
for t in range(T, T_new):
if type(idx) == tuple:
idx_cond = idx[0][:t]
tmp = idx_cond if T <= max_seq_length else idx_cond[-max_seq_length:]
# import pdb; pdb.set_trace()
idx_cond = (tmp.view(1, -1), idx[1].unsqueeze(0), idx[2])
else:
# ignore the not-filled-yet tokens
idx_cond = idx[:t]
# if the sequence context is growing too long we must crop it at max_seq_length
idx_cond = idx_cond if T <= max_seq_length else idx_cond[-max_seq_length:]
# forward
if type(idx) == tuple:
logits = model(idx_cond, maxlen=idx_cond[0].size(1))
else:
logits = model(idx_cond.view(1, -1))
logits = logits[0, -1] / temperature
# import pdb; pdb.set_trace()
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[[-1]]] = -float("Inf")
probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
# concatenate the new generation
if type(idx) == tuple:
seq = idx[0]
seq[t] = idx_next
idx = (seq, idx[1], idx[2])
else:
idx[t] = idx_next
# if <eos> token is triggered, return the output (stop generation)
if idx_next == eos_id:
if type(idx) == tuple:
return idx[0][:t+1]
else:
return idx[:t + 1] # include the EOS token
if type(idx) == tuple:
return idx[0]
else:
return idx
def main(
prompt: str = "Hello, my name is",
*,
num_samples: int = 1,
max_new_tokens: int = 50,
top_k: int = 200,
temperature: float = 0.8,
checkpoint_path: Optional[Path] = None,
tokenizer_path: Optional[Path] = None,
model_size: str = "7B",
quantize: Optional[str] = None,
) -> None:
"""Generates text samples based on a pre-trained LLaMA model and tokenizer.
Args:
prompt: The prompt string to use for generating the samples.
num_samples: The number of text samples to generate.
max_new_tokens: The number of generation steps to take.
top_k: The number of top most probable tokens to consider in the sampling process.
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
samples.
checkpoint_path: The checkpoint path to load.
tokenizer_path: The tokenizer path to load.
model_size: The model size to load.
quantize: Whether to quantize the model and using which method:
``"llm.int8"``: LLM.int8() mode,
``"gptq.int4"``: GPTQ 4-bit mode.
"""
if not checkpoint_path:
checkpoint_path = Path(f"./checkpoints/lit-llama/{model_size}/lit-llama.pth")
if not tokenizer_path:
tokenizer_path = Path("./checkpoints/lit-llama/tokenizer.model")
assert checkpoint_path.is_file(), checkpoint_path
assert tokenizer_path.is_file(), tokenizer_path
fabric = L.Fabric(accelerator="cuda", devices=1)
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
print("Loading model ...", file=sys.stderr)
t0 = time.time()
with EmptyInitOnDevice(
device=fabric.device, dtype=dtype, quantization_mode=quantize
):
model = LLaMA.from_name(model_size)
checkpoint = lazy_load(checkpoint_path)
model.load_state_dict(checkpoint)
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr)
model.eval()
model = fabric.setup_module(model)
tokenizer = Tokenizer(tokenizer_path)
encoded_prompt = tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device)
L.seed_everything(1234)
t0 = time.perf_counter()
for _ in range(num_samples):
y = generate(
model,
encoded_prompt,
max_new_tokens,
model.config.block_size, # type: ignore[union-attr,arg-type]
temperature=temperature,
top_k=top_k,
)
print(tokenizer.decode(y))
t = time.perf_counter() - t0
print(f"\n\nTime for inference: {t:.02f} sec total, {num_samples * max_new_tokens / t:.02f} tokens/sec", file=sys.stderr)
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr)
if __name__ == "__main__":
from jsonargparse import CLI
torch.set_float32_matmul_precision("high")
warnings.filterwarnings(
# Triggered internally at ../aten/src/ATen/EmptyTensor.cpp:31
"ignore",
message="ComplexHalf support is experimental and many operators don't support it yet"
)
warnings.filterwarnings(
# Triggered in bitsandbytes/autograd/_functions.py:298
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization",
)
CLI(main)