|
import gradio as gr |
|
import os |
|
from PIL import Image, ImageEnhance |
|
import requests |
|
import io |
|
import gc |
|
import json |
|
from typing import Tuple, Optional, Dict, Any |
|
import logging |
|
import numpy as np |
|
import cv2 |
|
from dotenv import load_dotenv |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG, |
|
format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
ART_STYLES = { |
|
"Ultra Réaliste": { |
|
"prompt_prefix": "ultra realistic photograph, stunning photorealistic quality, unreal engine 5 quality, cinema quality, masterpiece, perfect composition, award winning photography, professional lighting, 8k UHD", |
|
"negative_prompt": "artificial, digital art, illustration, painting, drawing, artistic, cartoon, anime, unreal, fake, low quality, blurry, soft, deformed", |
|
"quality_boost": 1.2 |
|
}, |
|
"Photoréaliste": { |
|
"prompt_prefix": "hyperrealistic studio photograph, extremely detailed, professional photography, perfect lighting, high-end camera, 8k uhd", |
|
"negative_prompt": "artificial, illustration, painting, animated, cartoon, artistic", |
|
"quality_boost": 1.1 |
|
}, |
|
"Art Moderne": { |
|
"prompt_prefix": "modern art style, professional design, contemporary aesthetic, trending artwork, perfect composition", |
|
"negative_prompt": "old style, vintage, traditional, amateur, low quality", |
|
"quality_boost": 1.0 |
|
}, |
|
"Minimaliste": { |
|
"prompt_prefix": "minimalist design, clean composition, elegant simplicity, refined aesthetic", |
|
"negative_prompt": "complex, cluttered, busy, ornate, detailed", |
|
"quality_boost": 1.0 |
|
} |
|
} |
|
|
|
class ImageGenerator: |
|
def __init__(self): |
|
self.API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" |
|
token = os.getenv('HUGGINGFACE_TOKEN') |
|
if not token: |
|
logger.error("HUGGINGFACE_TOKEN non trouvé!") |
|
self.headers = {"Authorization": f"Bearer {token}"} |
|
logger.info("ImageGenerator initialisé") |
|
|
|
def _enhance_image(self, image: Image.Image, params: Dict[str, Any]) -> Image.Image: |
|
"""Amélioration avancée de la qualité d'image""" |
|
try: |
|
|
|
cv2_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
if params.get("quality", 35) > 40: |
|
cv2_image = cv2.fastNlMeansDenoisingColored(cv2_image, None, 10, 10, 7, 21) |
|
|
|
|
|
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) |
|
cv2_image = cv2.filter2D(cv2_image, -1, kernel) |
|
|
|
|
|
image = Image.fromarray(cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
enhancers = [ |
|
(ImageEnhance.Sharpness, params.get("detail_level", 7) / 5), |
|
(ImageEnhance.Contrast, params.get("contrast", 5) / 5), |
|
(ImageEnhance.Color, params.get("saturation", 5) / 5) |
|
] |
|
|
|
for enhancer_class, factor in enhancers: |
|
if factor != 1.0: |
|
image = enhancer_class(image).enhance(factor) |
|
|
|
return image |
|
except Exception as e: |
|
logger.error(f"Erreur traitement image: {str(e)}") |
|
return image |
|
|
|
def _build_prompt(self, params: Dict[str, Any]) -> str: |
|
"""Construction optimisée du prompt""" |
|
try: |
|
style_info = ART_STYLES.get(params["style"], ART_STYLES["Art Moderne"]) |
|
|
|
|
|
base_prompt = f"{params['subject']}" |
|
if params.get('title'): |
|
base_prompt += f", with text '{params['title']}'" |
|
|
|
|
|
prompt = f"{base_prompt}, {style_info['prompt_prefix']}" |
|
|
|
return prompt |
|
except Exception as e: |
|
logger.error(f"Erreur prompt: {str(e)}") |
|
return params['subject'] |
|
|
|
def generate(self, params: Dict[str, Any]) -> Tuple[Optional[Image.Image], str]: |
|
try: |
|
if 'Bearer None' in self.headers['Authorization']: |
|
return None, "⚠️ Erreur: Token Hugging Face non configuré" |
|
|
|
|
|
style_info = ART_STYLES.get(params["style"], ART_STYLES["Art Moderne"]) |
|
quality_boost = style_info.get("quality_boost", 1.0) |
|
|
|
|
|
prompt = self._build_prompt(params) |
|
payload = { |
|
"inputs": prompt, |
|
"parameters": { |
|
"negative_prompt": style_info["negative_prompt"], |
|
"num_inference_steps": min(int(40 * quality_boost), 50), |
|
"guidance_scale": min(8.0 * quality_boost, 12.0), |
|
"width": 1024 if params.get("quality", 35) > 40 else 768, |
|
"height": 1024 if params["orientation"] == "Portrait" else 768 |
|
} |
|
} |
|
|
|
response = requests.post( |
|
self.API_URL, |
|
headers=self.headers, |
|
json=payload, |
|
timeout=45 |
|
) |
|
|
|
if response.status_code == 200: |
|
image = Image.open(io.BytesIO(response.content)) |
|
|
|
enhanced_image = self._enhance_image(image, params) |
|
return enhanced_image, "✨ Création réussie!" |
|
else: |
|
error_msg = f"⚠️ Erreur API {response.status_code}: {response.text}" |
|
logger.error(error_msg) |
|
return None, error_msg |
|
|
|
except Exception as e: |
|
error_msg = f"⚠️ Erreur: {str(e)}" |
|
logger.exception("Erreur génération:") |
|
return None, error_msg |
|
finally: |
|
gc.collect() |
|
|
|
def create_interface(): |
|
generator = ImageGenerator() |
|
|
|
with gr.Blocks(css="style.css") as app: |
|
gr.HTML(""" |
|
<div class="welcome"> |
|
<h1>🎨 Equity Artisan 3.0</h1> |
|
<p>Assistant de création d'affiches professionnelles</p> |
|
</div> |
|
""") |
|
|
|
with gr.Column(): |
|
|
|
with gr.Group(): |
|
gr.Markdown("### 📐 Format et Style") |
|
with gr.Row(): |
|
format_size = gr.Dropdown( |
|
choices=["A4", "A3", "A2", "A1"], |
|
value="A4", |
|
label="Format" |
|
) |
|
orientation = gr.Radio( |
|
choices=["Portrait", "Paysage"], |
|
value="Portrait", |
|
label="Orientation" |
|
) |
|
style = gr.Dropdown( |
|
choices=list(ART_STYLES.keys()), |
|
value="Art Moderne", |
|
label="Style artistique" |
|
) |
|
|
|
|
|
with gr.Group(): |
|
gr.Markdown("### 📝 Description") |
|
subject = gr.Textbox( |
|
label="Description", |
|
placeholder="Décrivez votre vision...", |
|
lines=3 |
|
) |
|
title = gr.Textbox( |
|
label="Titre (optionnel)", |
|
placeholder="Titre à inclure..." |
|
) |
|
|
|
|
|
with gr.Group(): |
|
gr.Markdown("### ⚙️ Paramètres") |
|
with gr.Row(): |
|
quality = gr.Slider( |
|
minimum=30, |
|
maximum=50, |
|
value=35, |
|
label="Qualité" |
|
) |
|
detail_level = gr.Slider( |
|
minimum=1, |
|
maximum=10, |
|
value=7, |
|
step=1, |
|
label="Niveau de Détail" |
|
) |
|
creativity = gr.Slider( |
|
minimum=5, |
|
maximum=15, |
|
value=7.5, |
|
label="Créativité" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
generate_btn = gr.Button("✨ Générer", variant="primary") |
|
clear_btn = gr.Button("🗑️ Effacer") |
|
|
|
|
|
image_output = gr.Image(label="Résultat") |
|
status = gr.Textbox(label="Status", interactive=False) |
|
|
|
def generate(*args): |
|
params = { |
|
"format_size": args[0], |
|
"orientation": args[1], |
|
"style": args[2], |
|
"subject": args[3], |
|
"title": args[4], |
|
"quality": args[5], |
|
"detail_level": args[6], |
|
"creativity": args[7] |
|
} |
|
return generator.generate(params) |
|
|
|
generate_btn.click( |
|
generate, |
|
inputs=[format_size, orientation, style, subject, title, |
|
quality, detail_level, creativity], |
|
outputs=[image_output, status] |
|
) |
|
|
|
clear_btn.click( |
|
lambda: (None, "🗑️ Image effacée"), |
|
outputs=[image_output, status] |
|
) |
|
|
|
return app |
|
|
|
if __name__ == "__main__": |
|
app = create_interface() |
|
app.launch() |