Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import MarianMTModel, MarianTokenizer | |
# Function to load the translation model and tokenizer | |
def load_model_and_tokenizer(): | |
model_name = "Helsinki-NLP/opus-mt-en-ROMANCE" # Example: English to Romance languages (like Spanish, French, etc.) | |
model = MarianMTModel.from_pretrained(model_name) | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
return model, tokenizer | |
# Function to translate text | |
def translate_text(text, model, tokenizer, src_lang, tgt_lang): | |
# Prepare the text for translation | |
translation_input = tokenizer(text, return_tensors="pt", padding=True) | |
# Translate text | |
translated = model.generate(**translation_input) | |
# Decode the translated text | |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
# Streamlit UI components | |
st.title("Language Translation App") | |
st.write("Translate text between multiple languages using the Helsinki-NLP translation models.") | |
# Load model and tokenizer | |
model, tokenizer = load_model_and_tokenizer() | |
# Language selection for input and output | |
available_languages = ["en", "es", "fr", "de", "it", "pt", "ro", "nl", "pl", "ca"] | |
input_lang = st.selectbox("Select input language", available_languages) | |
output_lang = st.selectbox("Select output language", available_languages) | |
# Text input | |
text_to_translate = st.text_area("Enter text to translate:") | |
# Perform translation if text is entered | |
if text_to_translate: | |
if input_lang != output_lang: | |
translated_text = translate_text(text_to_translate, model, tokenizer, input_lang, output_lang) | |
st.write("Translated Text:") | |
st.write(translated_text) | |
else: | |
st.warning("Input and output languages cannot be the same.") |