import streamlit as st from transformers import MarianMTModel, MarianTokenizer # Function to load the translation model and tokenizer @st.cache_resource def load_model_and_tokenizer(): model_name = "Helsinki-NLP/opus-mt-en-ROMANCE" # Example: English to Romance languages (like Spanish, French, etc.) model = MarianMTModel.from_pretrained(model_name) tokenizer = MarianTokenizer.from_pretrained(model_name) return model, tokenizer # Function to translate text def translate_text(text, model, tokenizer, src_lang, tgt_lang): # Prepare the text for translation translation_input = tokenizer(text, return_tensors="pt", padding=True) # Translate text translated = model.generate(**translation_input) # Decode the translated text translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) return translated_text # Streamlit UI components st.title("Language Translation App") st.write("Translate text between multiple languages using the Helsinki-NLP translation models.") # Load model and tokenizer model, tokenizer = load_model_and_tokenizer() # Language selection for input and output available_languages = ["en", "es", "fr", "de", "it", "pt", "ro", "nl", "pl", "ca"] input_lang = st.selectbox("Select input language", available_languages) output_lang = st.selectbox("Select output language", available_languages) # Text input text_to_translate = st.text_area("Enter text to translate:") # Perform translation if text is entered if text_to_translate: if input_lang != output_lang: translated_text = translate_text(text_to_translate, model, tokenizer, input_lang, output_lang) st.write("Translated Text:") st.write(translated_text) else: st.warning("Input and output languages cannot be the same.")