Spaces:
Sleeping
Sleeping
| import time | |
| import gradio as gr | |
| import torch | |
| from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
| # Load pre-trained model and tokenizer | |
| tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
| model = GPT2LMHeadModel.from_pretrained("gpt2") | |
| def generate_response(user_input, max_length=50): | |
| # Tokenize user input and convert to tensor | |
| input_ids = tokenizer.encode(user_input, return_tensors="pt") | |
| # Generate response using the model | |
| output = model.generate(input_ids, max_length=max_length, num_return_sequences=1) | |
| # Decode the generated response | |
| response = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return response | |
| def resposeYielder(message, history): | |
| yield generate_response(message) | |
| demo = gr.ChatInterface(resposeYielder).queue() | |
| if __name__ == "__main__": | |
| demo.launch() | |