timeki's picture
add dora graph recommandation
6b43c86
raw
history blame
3.06 kB
from operator import itemgetter
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.prompts.base import format_document
from climateqa.engine.chains.prompts import answer_prompt_template,answer_prompt_without_docs_template,answer_prompt_images_template
from climateqa.engine.chains.prompts import papers_prompt_template
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
def _combine_documents(
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, sep="\n\n"
):
doc_strings = []
for i,doc in enumerate(docs):
# chunk_type = "Doc" if doc.metadata["chunk_type"] == "text" else "Image"
chunk_type = "Doc"
if isinstance(doc,str):
doc_formatted = doc
else:
doc_formatted = format_document(doc, document_prompt)
doc_string = f"{chunk_type} {i+1}: " + doc_formatted
doc_string = doc_string.replace("\n"," ")
doc_strings.append(doc_string)
return sep.join(doc_strings)
def get_text_docs(x):
return [doc for doc in x if doc.metadata["chunk_type"] == "text"]
def get_image_docs(x):
return [doc for doc in x if doc.metadata["chunk_type"] == "image"]
def make_rag_chain(llm):
prompt = ChatPromptTemplate.from_template(answer_prompt_template)
chain = ({
"context":lambda x : _combine_documents(x["documents"]),
"query":itemgetter("query"),
"language":itemgetter("language"),
"audience":itemgetter("audience"),
} | prompt | llm | StrOutputParser())
return chain
def make_rag_chain_without_docs(llm):
prompt = ChatPromptTemplate.from_template(answer_prompt_without_docs_template)
chain = prompt | llm | StrOutputParser()
return chain
def make_rag_node(llm,with_docs = True):
if with_docs:
rag_chain = make_rag_chain(llm)
else:
rag_chain = make_rag_chain_without_docs(llm)
async def answer_rag(state,config):
answer = await rag_chain.ainvoke(state,config)
print(f"\n\nAnswer:\n{answer}")
return {"answer":answer}
return answer_rag
# def make_rag_papers_chain(llm):
# prompt = ChatPromptTemplate.from_template(papers_prompt_template)
# input_documents = {
# "context":lambda x : _combine_documents(x["docs"]),
# **pass_values(["question","language"])
# }
# chain = input_documents | prompt | llm | StrOutputParser()
# chain = rename_chain(chain,"answer")
# return chain
# def make_illustration_chain(llm):
# prompt_with_images = ChatPromptTemplate.from_template(answer_prompt_images_template)
# input_description_images = {
# "images":lambda x : _combine_documents(get_image_docs(x["docs"])),
# **pass_values(["question","audience","language","answer"]),
# }
# illustration_chain = input_description_images | prompt_with_images | llm | StrOutputParser()
# return illustration_chain