Anomaly_VLM / app.py
Duckkyy's picture
Upload app.py
3ed1592 verified
import base64
import random
import shutil
import time
from openai import OpenAI
import glob
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import zipfile
from PIL import Image
from sklearn.decomposition import PCA
from PIL import Image
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.svm import OneClassSVM
import numpy as np
import skimage
from skimage.feature import hog
from skimage.color import rgb2gray
from skimage import io
from sklearn.decomposition import PCA
from sklearn.svm import OneClassSVM
from sklearn.preprocessing import StandardScaler
import os
from tqdm import tqdm
import pickle
import joblib
import cv2
import streamlit as st
from streamlit_image_select import image_select
def cut_video(video_path):
# video_path = '/Users/ducky/Downloads/thief_1.mp4'
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
frames_dir = "./data/video_frame"
if os.path.exists(frames_dir):
shutil.rmtree(frames_dir)
os.makedirs(frames_dir, exist_ok=True)
frame_count = 0
frame_times = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
timestamp_ms = (frame_count / fps) * 1000
minutes = int(timestamp_ms // 60000)
seconds = int((timestamp_ms % 60000) // 1000)
milliseconds = int(timestamp_ms % 1000)
time_formatted = f"{minutes:02}:{seconds:02}:{milliseconds:03}"
frame_times.append(time_formatted)
frame_file_path = os.path.join(frames_dir, f'frame_{frame_count:04d}.jpg')
cv2.imwrite(frame_file_path, frame)
frame_count += 1
cap.release()
return frames_dir, frame_times
def extract_hog_features(image_path):
"""
画像ファイルからHOG特徴量を抽出します。
:param image_path: 画像ファイルのパス
:return: HOG特徴量のNumPy配列
"""
# 画像を読み込む
img = io.imread(image_path)
img = img[:,:,:3]
# 画像をグレースケールに変換
gray_img = rgb2gray(img)
# HOG特徴量を抽出
features, _ = hog(gray_img, visualize=True, block_norm='L2-Hys')
return features
def prepare_features(image_paths):
"""
複数の画像からHOG特徴量を抽出し、特徴量の行列を作成します。
:param image_paths: 画像ファイルのパスのリスト
:return: 特徴量のNumPy配列
"""
progress_bar = st.progress(0)
status_text = st.empty()
features = []
for i, path in enumerate(tqdm(image_paths)):
features.append(extract_hog_features(path))
progress = int((i + 1) / len(image_paths) * 100)
progress_bar.progress(progress)
status_text.text(f"Processing image {i+1}/{len(image_paths)}: {path}")
progress_bar.empty()
status_text.text("Processing complete!")
status_text.empty()
return np.array(features)
def run_pca(features):
pca = PCA(n_components=4)
progress_bar = st.progress(0)
status_text = st.empty()
def simulate_pca_progress(progress_bar, status_text, total_steps=100):
for step in range(total_steps):
progress_bar.progress(int((step + 1) / total_steps * 100))
status_text.text(f"PCA Transformation Progress: {int((step + 1) / total_steps * 100)}%")
time.sleep(0.1)
simulate_pca_progress(progress_bar, status_text)
transformed_data = pca.fit_transform(features)
status_text.text("PCA Transformation Complete!")
progress_bar.empty()
status_text.empty()
return pca, transformed_data
def run_standard_scale(features):
scaler = StandardScaler()
progress_bar = st.progress(0)
status_text = st.empty()
def simulate_ss_progress(progress_bar, status_text, total_steps=100):
for step in range(total_steps):
progress_bar.progress(int((step + 1) / total_steps * 100))
status_text.text(f"StandardScaler Transformation Progress: {int((step + 1) / total_steps * 100)}%")
time.sleep(0.1)
simulate_ss_progress(progress_bar, status_text)
transformed_data = scaler.fit_transform(features)
status_text.text("StandardScaler Transformation Complete!")
progress_bar.empty()
status_text.empty()
return scaler, transformed_data
def run_OneClassSVM(z_train):
progress_bar = st.progress(0)
status_text = st.empty()
clf = svm.OneClassSVM(nu=0.2, kernel="rbf", gamma=0.001)
def simulate_fitting_progress(clf, z_train, total_steps=100):
for step in range(total_steps):
time.sleep(0.05)
progress_bar.progress(step + 1)
status_text.text(f"Fitting model... {step + 1}% complete")
clf.fit(z_train)
progress_bar.empty()
status_text.empty()
simulate_fitting_progress(clf, z_train)
return clf
def predict_with_progress(clf, features_array):
progress_bar = st.progress(0)
status_text = st.empty()
predictions = np.zeros(features_array.shape[0])
for i in range(features_array.shape[0]):
predictions[i] = clf.predict(features_array[i].reshape(1, -1))
# predictions[i] = clf.decision_function(features_array[i].reshape(1, -1))
progress = int((i + 1) / features_array.shape[0] * 100)
progress_bar.progress(progress)
status_text.text(f"Predicting... {progress}% complete")
progress_bar.empty()
status_text.empty()
return predictions
def prepare_all_displayed_anomalies(frames_dir, predictions):
anomaly_indices = [index for index, value in enumerate(predictions) if value == -1]
anomaly_indices.sort()
frames = os.listdir(frames_dir)
frames.sort()
anomaly_folder = "./data/anomaly"
os.makedirs(anomaly_folder, exist_ok=True)
anomaly_paths = []
frame_number = 0
anomaly_count = 0
for frame in frames:
frame_path = os.path.join(frames_dir, frame)
if frame_number == anomaly_indices[anomaly_count]:
anomaly_frame_path = os.path.join(anomaly_folder, f'frame_{frame_number:04d}.jpg')
shutil.copy(frame_path, anomaly_frame_path)
anomaly_paths.append(anomaly_frame_path)
anomaly_count += 1
if anomaly_count >= len(anomaly_indices): break
frame_number += 1
return anomaly_paths
def prepare_3_displayed_anomalies(frames_dir, predictions, frame_times):
anomaly_frames = [index for index, value in enumerate(predictions) if value == -1]
indices = random.sample(range(len(anomaly_frames)), 3)
anomaly_frames = [anomaly_frames[i] for i in indices]
anomaly_frames.sort()
frames = os.listdir(frames_dir)
frames.sort()
anomaly_folder = "./data/anomaly"
os.makedirs(anomaly_folder, exist_ok=True)
anomaly_paths = []
frame_number = 0
anomaly_count = 0
for frame in frames:
frame_path = os.path.join(frames_dir, frame)
if frame_number == anomaly_frames[anomaly_count]:
anomaly_frame_path = os.path.join(anomaly_folder, f'frame_{frame_number:04d}.jpg')
shutil.copy(frame_path, anomaly_frame_path)
anomaly_paths.append([anomaly_frame_path, frame_times[frame_number]])
anomaly_count += 1
if anomaly_count >= len(anomaly_frames): break
frame_number += 1
return anomaly_paths
def OneClassSvm_anomaly_detection(image_paths):
features = prepare_features(image_paths)
_, features_scaled = run_standard_scale(features)
_, z_train = run_pca(features_scaled)
clf = run_OneClassSVM(z_train)
return clf, z_train
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def get_response(model, client, image_path):
base64_image = encode_image(image_path)
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant that responds in Markdown. Help me with task!"},
{"role": "user", "content": [
{"type": "text", "text": "この画像の中の人物が行っている活動を説明してください"},
{"type": "image_url", "image_url": {
"url": f"data:image/png;base64,{base64_image}"}
}
]}
],
temperature=0.0,
)
return response.choices[0].message.content
def VLM_anomaly_detection(anomaly_paths):
model = "gpt-4o"
API_KEY = os.getenv("MY_API_KEY")
client = OpenAI(api_key=API_KEY)
progress_bar = st.progress(0)
status_text = st.empty()
st.session_state.responses = []
anomaly_paths = [path[0] for path in anomaly_paths]
for i, anomaly_path in enumerate(tqdm(anomaly_paths)):
progress = int((i + 1) / len(anomaly_paths) * 100)
progress_bar.progress(progress)
status_text.text(f"Running VLM {i+1}/{len(anomaly_paths)}")
response = get_response(model, client, anomaly_path)
st.session_state.responses.append(response)
progress_bar.empty()
status_text.text("Processing complete!")
status_text.empty()
def main():
if 'responses' not in st.session_state:
st.session_state.responses = []
if 'display_anomalies' not in st.session_state:
st.session_state.display_anomalies = []
with st.sidebar:
st.image("logo.png")
uploaded_video = st.file_uploader("Upload video", type=["mp4", "mov", "avi"])
os.makedirs("./data", exist_ok=True)
if uploaded_video is not None:
video_file_path = "./data/uploaded_video.mp4"
with open(video_file_path, "wb") as f:
f.write(uploaded_video.read())
st.video(uploaded_video, start_time=0)
for _ in range(3): st.write(" ")
st.write("サイドバーより動画としてアップロードし推論ボタンをクリック")
if st.button("推論開始"):
with st.spinner("データを学習中、少々お待ちください..."):
video_file_path = "./data/uploaded_video.mp4"
frames_dir, frame_times = cut_video(video_file_path)
image_paths = [os.path.join(frames_dir, image_path) for image_path in os.listdir(frames_dir)]
clf, z_train = OneClassSvm_anomaly_detection(image_paths)
with st.spinner("学習が完了しました。異常検知を行っています..."):
predictions = predict_with_progress(clf, z_train)
st.session_state.display_anomalies = []
st.session_state.display_anomalies = prepare_3_displayed_anomalies(frames_dir, predictions, frame_times)
VLM_anomaly_detection(st.session_state.display_anomalies)
if st.session_state.display_anomalies:
anomaly_paths = [path[0] for path in st.session_state.display_anomalies]
anomaly_time = [str(path[1]) for path in st.session_state.display_anomalies]
selected = image_select(
label = "「異常」である可能性があるフレーム",
images = anomaly_paths,
captions = anomaly_time,
key = "image_select"
)
selected_img = str(selected)[:100]
idx = anomaly_paths.index(selected_img)
st.info(st.session_state.responses[idx])
if __name__ == "__main__":
main()