Spaces:
Running
on
L40S
Running
on
L40S
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING | |
from ..utils import ( | |
DIFFUSERS_SLOW_IMPORT, | |
_LazyModule, | |
is_flax_available, | |
is_torch_available, | |
) | |
_import_structure = {} | |
if is_torch_available(): | |
_import_structure["adapter"] = ["MultiAdapter", "T2IAdapter"] | |
_import_structure["autoencoders.autoencoder_asym_kl"] = ["AsymmetricAutoencoderKL"] | |
_import_structure["autoencoders.autoencoder_kl"] = ["AutoencoderKL"] | |
_import_structure["autoencoders.autoencoder_kl_temporal_decoder"] = ["AutoencoderKLTemporalDecoder"] | |
_import_structure["autoencoders.autoencoder_tiny"] = ["AutoencoderTiny"] | |
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"] | |
_import_structure["controlnet"] = ["ControlNetModel"] | |
_import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"] | |
_import_structure["embeddings"] = ["ImageProjection"] | |
_import_structure["modeling_utils"] = ["ModelMixin"] | |
_import_structure["prior_transformer"] = ["PriorTransformer"] | |
_import_structure["t5_film_transformer"] = ["T5FilmDecoder"] | |
_import_structure["transformer_2d"] = ["Transformer2DModel"] | |
_import_structure["transformer_temporal"] = ["TransformerTemporalModel"] | |
_import_structure["unets.unet_1d"] = ["UNet1DModel"] | |
_import_structure["unets.unet_2d"] = ["UNet2DModel"] | |
_import_structure["unets.unet_2d_condition"] = ["UNet2DConditionModel"] | |
_import_structure["unets.unet_3d_condition"] = ["UNet3DConditionModel"] | |
_import_structure["unets.unet_kandinsky3"] = ["Kandinsky3UNet"] | |
_import_structure["unets.unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"] | |
_import_structure["unets.unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"] | |
_import_structure["unets.uvit_2d"] = ["UVit2DModel"] | |
_import_structure["vq_model"] = ["VQModel"] | |
if is_flax_available(): | |
_import_structure["controlnet_flax"] = ["FlaxControlNetModel"] | |
_import_structure["unets.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"] | |
_import_structure["vae_flax"] = ["FlaxAutoencoderKL"] | |
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: | |
if is_torch_available(): | |
from .adapter import MultiAdapter, T2IAdapter | |
from .autoencoders import ( | |
AsymmetricAutoencoderKL, | |
AutoencoderKL, | |
AutoencoderKLTemporalDecoder, | |
AutoencoderTiny, | |
ConsistencyDecoderVAE, | |
) | |
from .controlnet import ControlNetModel | |
from .dual_transformer_2d import DualTransformer2DModel | |
from .embeddings import ImageProjection | |
from .modeling_utils import ModelMixin | |
from .prior_transformer import PriorTransformer | |
from .t5_film_transformer import T5FilmDecoder | |
from .transformer_2d import Transformer2DModel | |
from .transformer_temporal import TransformerTemporalModel | |
from .unets import ( | |
Kandinsky3UNet, | |
MotionAdapter, | |
UNet1DModel, | |
UNet2DConditionModel, | |
UNet2DModel, | |
UNet3DConditionModel, | |
UNetMotionModel, | |
UNetSpatioTemporalConditionModel, | |
UVit2DModel, | |
) | |
from .vq_model import VQModel | |
if is_flax_available(): | |
from .controlnet_flax import FlaxControlNetModel | |
from .unets import FlaxUNet2DConditionModel | |
from .vae_flax import FlaxAutoencoderKL | |
else: | |
import sys | |
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | |