Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils.accelerate_utils import apply_forward_hook | |
from ..modeling_outputs import AutoencoderKLOutput | |
from ..modeling_utils import ModelMixin | |
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder, MaskConditionDecoder | |
class AsymmetricAutoencoderKL(ModelMixin, ConfigMixin): | |
r""" | |
Designing a Better Asymmetric VQGAN for StableDiffusion https://arxiv.org/abs/2306.04632 . A VAE model with KL loss | |
for encoding images into latents and decoding latent representations into images. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
Tuple of downsample block types. | |
down_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
Tuple of down block output channels. | |
layers_per_down_block (`int`, *optional*, defaults to `1`): | |
Number layers for down block. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
Tuple of upsample block types. | |
up_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
Tuple of up block output channels. | |
layers_per_up_block (`int`, *optional*, defaults to `1`): | |
Number layers for up block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. | |
sample_size (`int`, *optional*, defaults to `32`): Sample input size. | |
norm_num_groups (`int`, *optional*, defaults to `32`): | |
Number of groups to use for the first normalization layer in ResNet blocks. | |
scaling_factor (`float`, *optional*, defaults to 0.18215): | |
The component-wise standard deviation of the trained latent space computed using the first batch of the | |
training set. This is used to scale the latent space to have unit variance when training the diffusion | |
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",), | |
down_block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_down_block: int = 1, | |
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), | |
up_block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_up_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 4, | |
norm_num_groups: int = 32, | |
sample_size: int = 32, | |
scaling_factor: float = 0.18215, | |
) -> None: | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=down_block_out_channels, | |
layers_per_block=layers_per_down_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
double_z=True, | |
) | |
# pass init params to Decoder | |
self.decoder = MaskConditionDecoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=up_block_out_channels, | |
layers_per_block=layers_per_up_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
) | |
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) | |
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) | |
self.use_slicing = False | |
self.use_tiling = False | |
self.register_to_config(block_out_channels=up_block_out_channels) | |
self.register_to_config(force_upcast=False) | |
def encode( | |
self, x: torch.FloatTensor, return_dict: bool = True | |
) -> Union[AutoencoderKLOutput, Tuple[torch.FloatTensor]]: | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def _decode( | |
self, | |
z: torch.FloatTensor, | |
image: Optional[torch.FloatTensor] = None, | |
mask: Optional[torch.FloatTensor] = None, | |
return_dict: bool = True, | |
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z, image, mask) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def decode( | |
self, | |
z: torch.FloatTensor, | |
generator: Optional[torch.Generator] = None, | |
image: Optional[torch.FloatTensor] = None, | |
mask: Optional[torch.FloatTensor] = None, | |
return_dict: bool = True, | |
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: | |
decoded = self._decode(z, image, mask).sample | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
mask: Optional[torch.FloatTensor] = None, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): Input sample. | |
mask (`torch.FloatTensor`, *optional*, defaults to `None`): Optional inpainting mask. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z, sample, mask).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |