Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Callable, Dict, List, Optional, Union | |
| import torch | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from ...loaders import LoraLoaderMixin | |
| from ...models import Kandinsky3UNet, VQModel | |
| from ...schedulers import DDPMScheduler | |
| from ...utils import ( | |
| deprecate, | |
| is_accelerate_available, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> from diffusers import AutoPipelineForText2Image | |
| >>> import torch | |
| >>> pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16) | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background." | |
| >>> generator = torch.Generator(device="cpu").manual_seed(0) | |
| >>> image = pipe(prompt, num_inference_steps=25, generator=generator).images[0] | |
| ``` | |
| """ | |
| def downscale_height_and_width(height, width, scale_factor=8): | |
| new_height = height // scale_factor**2 | |
| if height % scale_factor**2 != 0: | |
| new_height += 1 | |
| new_width = width // scale_factor**2 | |
| if width % scale_factor**2 != 0: | |
| new_width += 1 | |
| return new_height * scale_factor, new_width * scale_factor | |
| class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin): | |
| model_cpu_offload_seq = "text_encoder->unet->movq" | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "negative_attention_mask", | |
| "attention_mask", | |
| ] | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| unet: Kandinsky3UNet, | |
| scheduler: DDPMScheduler, | |
| movq: VQModel, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq | |
| ) | |
| def remove_all_hooks(self): | |
| if is_accelerate_available(): | |
| from accelerate.hooks import remove_hook_from_module | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| for model in [self.text_encoder, self.unet, self.movq]: | |
| if model is not None: | |
| remove_hook_from_module(model, recurse=True) | |
| self.unet_offload_hook = None | |
| self.text_encoder_offload_hook = None | |
| self.final_offload_hook = None | |
| def process_embeds(self, embeddings, attention_mask, cut_context): | |
| if cut_context: | |
| embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0]) | |
| max_seq_length = attention_mask.sum(-1).max() + 1 | |
| embeddings = embeddings[:, :max_seq_length] | |
| attention_mask = attention_mask[:, :max_seq_length] | |
| return embeddings, attention_mask | |
| def encode_prompt( | |
| self, | |
| prompt, | |
| do_classifier_free_guidance=True, | |
| num_images_per_prompt=1, | |
| device=None, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| _cut_context=False, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| negative_attention_mask: Optional[torch.FloatTensor] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`, *optional*): | |
| torch device to place the resulting embeddings on | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| attention_mask (`torch.FloatTensor`, *optional*): | |
| Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. | |
| negative_attention_mask (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. | |
| """ | |
| if prompt is not None and negative_prompt is not None: | |
| if type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| if device is None: | |
| device = self._execution_device | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| max_length = 128 | |
| if prompt_embeds is None: | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids.to(device) | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids, | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds, attention_mask = self.process_embeds(prompt_embeds, attention_mask, _cut_context) | |
| prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2) | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| else: | |
| dtype = None | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| attention_mask = attention_mask.repeat(num_images_per_prompt, 1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| if negative_prompt is not None: | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=128, | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = uncond_input.input_ids.to(device) | |
| negative_attention_mask = uncond_input.attention_mask.to(device) | |
| negative_prompt_embeds = self.text_encoder( | |
| text_input_ids, | |
| attention_mask=negative_attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]] | |
| negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]] | |
| negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2) | |
| else: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_attention_mask = torch.zeros_like(attention_mask) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| if negative_prompt_embeds.shape != prompt_embeds.shape: | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| else: | |
| negative_prompt_embeds = None | |
| negative_attention_mask = None | |
| return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask | |
| def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| latents = latents * scheduler.init_noise_sigma | |
| return latents | |
| def check_inputs( | |
| self, | |
| prompt, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| attention_mask=None, | |
| negative_attention_mask=None, | |
| ): | |
| if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if negative_prompt_embeds is not None and negative_attention_mask is None: | |
| raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`") | |
| if negative_prompt_embeds is not None and negative_attention_mask is not None: | |
| if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape: | |
| raise ValueError( | |
| "`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but" | |
| f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`" | |
| f" {negative_attention_mask.shape}." | |
| ) | |
| if prompt_embeds is not None and attention_mask is None: | |
| raise ValueError("Please provide `attention_mask` along with `prompt_embeds`") | |
| if prompt_embeds is not None and attention_mask is not None: | |
| if prompt_embeds.shape[:2] != attention_mask.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`" | |
| f" {attention_mask.shape}." | |
| ) | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_inference_steps: int = 25, | |
| guidance_scale: float = 3.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| height: Optional[int] = 1024, | |
| width: Optional[int] = 1024, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| negative_attention_mask: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| latents=None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| num_inference_steps (`int`, *optional*, defaults to 25): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
| timesteps are used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 3.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The width in pixels of the generated image. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| attention_mask (`torch.FloatTensor`, *optional*): | |
| Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. | |
| negative_attention_mask (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| clean_caption (`bool`, *optional*, defaults to `True`): | |
| Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
| be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
| prompt. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple` | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| cut_context = True | |
| device = self._execution_device | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| attention_mask, | |
| negative_attention_mask, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt( | |
| prompt, | |
| self.do_classifier_free_guidance, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| _cut_context=cut_context, | |
| attention_mask=attention_mask, | |
| negative_attention_mask=negative_attention_mask, | |
| ) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool() | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latents | |
| height, width = downscale_height_and_width(height, width, 8) | |
| latents = self.prepare_latents( | |
| (batch_size * num_images_per_prompt, 4, height, width), | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| self.scheduler, | |
| ) | |
| if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: | |
| self.text_encoder_offload_hook.offload() | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| encoder_attention_mask=attention_mask, | |
| return_dict=False, | |
| )[0] | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond | |
| # noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, | |
| t, | |
| latents, | |
| generator=generator, | |
| ).prev_sample | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| attention_mask = callback_outputs.pop("attention_mask", attention_mask) | |
| negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| # post-processing | |
| if output_type not in ["pt", "np", "pil", "latent"]: | |
| raise ValueError( | |
| f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}" | |
| ) | |
| if not output_type == "latent": | |
| image = self.movq.decode(latents, force_not_quantize=True)["sample"] | |
| if output_type in ["np", "pil"]: | |
| image = image * 0.5 + 0.5 | |
| image = image.clamp(0, 1) | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| else: | |
| image = latents | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |