Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 Open AI and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Tuple | |
| import numpy as np | |
| import torch | |
| class DifferentiableProjectiveCamera: | |
| """ | |
| Implements a batch, differentiable, standard pinhole camera | |
| """ | |
| origin: torch.Tensor # [batch_size x 3] | |
| x: torch.Tensor # [batch_size x 3] | |
| y: torch.Tensor # [batch_size x 3] | |
| z: torch.Tensor # [batch_size x 3] | |
| width: int | |
| height: int | |
| x_fov: float | |
| y_fov: float | |
| shape: Tuple[int] | |
| def __post_init__(self): | |
| assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] | |
| assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 | |
| assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 | |
| def resolution(self): | |
| return torch.from_numpy(np.array([self.width, self.height], dtype=np.float32)) | |
| def fov(self): | |
| return torch.from_numpy(np.array([self.x_fov, self.y_fov], dtype=np.float32)) | |
| def get_image_coords(self) -> torch.Tensor: | |
| """ | |
| :return: coords of shape (width * height, 2) | |
| """ | |
| pixel_indices = torch.arange(self.height * self.width) | |
| coords = torch.stack( | |
| [ | |
| pixel_indices % self.width, | |
| torch.div(pixel_indices, self.width, rounding_mode="trunc"), | |
| ], | |
| axis=1, | |
| ) | |
| return coords | |
| def camera_rays(self): | |
| batch_size, *inner_shape = self.shape | |
| inner_batch_size = int(np.prod(inner_shape)) | |
| coords = self.get_image_coords() | |
| coords = torch.broadcast_to(coords.unsqueeze(0), [batch_size * inner_batch_size, *coords.shape]) | |
| rays = self.get_camera_rays(coords) | |
| rays = rays.view(batch_size, inner_batch_size * self.height * self.width, 2, 3) | |
| return rays | |
| def get_camera_rays(self, coords: torch.Tensor) -> torch.Tensor: | |
| batch_size, *shape, n_coords = coords.shape | |
| assert n_coords == 2 | |
| assert batch_size == self.origin.shape[0] | |
| flat = coords.view(batch_size, -1, 2) | |
| res = self.resolution() | |
| fov = self.fov() | |
| fracs = (flat.float() / (res - 1)) * 2 - 1 | |
| fracs = fracs * torch.tan(fov / 2) | |
| fracs = fracs.view(batch_size, -1, 2) | |
| directions = ( | |
| self.z.view(batch_size, 1, 3) | |
| + self.x.view(batch_size, 1, 3) * fracs[:, :, :1] | |
| + self.y.view(batch_size, 1, 3) * fracs[:, :, 1:] | |
| ) | |
| directions = directions / directions.norm(dim=-1, keepdim=True) | |
| rays = torch.stack( | |
| [ | |
| torch.broadcast_to(self.origin.view(batch_size, 1, 3), [batch_size, directions.shape[1], 3]), | |
| directions, | |
| ], | |
| dim=2, | |
| ) | |
| return rays.view(batch_size, *shape, 2, 3) | |
| def resize_image(self, width: int, height: int) -> "DifferentiableProjectiveCamera": | |
| """ | |
| Creates a new camera for the resized view assuming the aspect ratio does not change. | |
| """ | |
| assert width * self.height == height * self.width, "The aspect ratio should not change." | |
| return DifferentiableProjectiveCamera( | |
| origin=self.origin, | |
| x=self.x, | |
| y=self.y, | |
| z=self.z, | |
| width=width, | |
| height=height, | |
| x_fov=self.x_fov, | |
| y_fov=self.y_fov, | |
| ) | |
| def create_pan_cameras(size: int) -> DifferentiableProjectiveCamera: | |
| origins = [] | |
| xs = [] | |
| ys = [] | |
| zs = [] | |
| for theta in np.linspace(0, 2 * np.pi, num=20): | |
| z = np.array([np.sin(theta), np.cos(theta), -0.5]) | |
| z /= np.sqrt(np.sum(z**2)) | |
| origin = -z * 4 | |
| x = np.array([np.cos(theta), -np.sin(theta), 0.0]) | |
| y = np.cross(z, x) | |
| origins.append(origin) | |
| xs.append(x) | |
| ys.append(y) | |
| zs.append(z) | |
| return DifferentiableProjectiveCamera( | |
| origin=torch.from_numpy(np.stack(origins, axis=0)).float(), | |
| x=torch.from_numpy(np.stack(xs, axis=0)).float(), | |
| y=torch.from_numpy(np.stack(ys, axis=0)).float(), | |
| z=torch.from_numpy(np.stack(zs, axis=0)).float(), | |
| width=size, | |
| height=size, | |
| x_fov=0.7, | |
| y_fov=0.7, | |
| shape=(1, len(xs)), | |
| ) | |